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Preface
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develop computer performance evaluation (CPE) tools for
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the accuracy of modeling job swapping.
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will use this knowledge to take advantage of my strengths

and improve on some of my weaknesses.
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this thesis. More importantly, his light-hearted humor and
warm smile were always there to cheer me up. May you never

lose your tremendous concern for others.
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called Mark of the Unicorn for developing Scribble, the best
text formatter for a CP/M home computer I've ever seen, and

for their patient help when I needed it.

Michael H. Cox

-iii-




Preface

Table of Contents

List of Figures

List of Tables

Abstract

Chapter 1 Introduction

1.1 Computer Performance Evaluation (CPE)

Need for CPE

1.1.1
1.1.2 CPE Techniques
1.1.3 Development of Analytical Models

in CPE

.3.1 Single Queue, Infinite
Population Model

3.2 Finite Population Model
3.3 Central Server Model

3.4 Classical Swapping Model
3

.1.3.5 Chen's Swapping Model

1.2 Problem Statement

1.2.1 Motivation for Research

Objectives

1.2.2 Background
1.2.3 Research Objectives

1.2.3.1 Primary Objective
1.2.3.2 Specific Objectives

1.2.4 Scope of the Thesis

Chapter 2 Operating 8ystems‘and CPE

2.1 Operating System Objectives
2.2 Resource Manager Functions
2.3 The DECsystem-10 Operating System:

TOPS-10 Monitor

2.3.1 Monitor Programs
2,3.2 Job States

—1v-

ii
viii

ix

N e e

= Q ~Sonn

11
12

13

13
13

~S W m N Lol




Table of Contents (cont,)

2.3.3 Monitor Queueing Structure

2.3.3.1 In-core Versus Out-core
Chains

2.3.3,2 Processor Queues

2.3.3.3 Long-term Wait Queues

2.3.3,4 Processor Queue Time Slices

2.4 Chapter Summary

Chapter 3 Analytical Modeling

3.1 Barly Queueing Network Models
3.2 Multi-class Queueing Network Model

1 Variables in the Model

2 Open Network Outside Arrival
Processes

3 Service Time Distributions

4 State-dependent Service Rates

5

6

Service Center Types
States of the Model

3.2.6.1 Type 1 Service Center

3.2.6.2 Type 2 and Type 3 Service
Centers

3.2.6.3 Type 4 Service Centers

3.2.7 Calculating Equilibrium State
Probabilities

.1l Balance Equations

3.2.7
3.2.7.2 Product Form Solution

3.2.8 Example Problem

3.2.8.1 The Balance Equations
3.2.8.2 The Product Form Solution

3.3 Chen's Swapping Model
3.3.1 vVariables in the Model

-t

1l

11
11
12

14

= w O~ [< W& ] [ w [ [

oo

anhegtil,




Table of Contents (cont.)

3.3.1.1 Derivation of P14 and Plz

3.3.2 Program Swapping Behavior
3.3.2.1 Derivation of P43
3.3.2.2 Derivation of P13

3.3.2.3 Approximation Algorithm
3.4 Chapter Summary

Chapter 4 Computer Implementation
4.1 The McKenzie Program
4.1.1 Program Capabilities
4.1.2 Program Structure
4.1.3 Program Inputs
4.2 The Chen Modification

4.2,1 Program Structure
4.2.2 Program Inputs

4.3 Programming Notes for Future
Modification

4.4 Chapter Summary
Chapter 5 Analytical Modeling Results
5.1 Modeling Interactive/Batch Workloads

5.2 DECsystem-10 System Configuration
Parameters

5.2.1 Hardware Parameters
5.2.2 Workload Parameters
5.2.3 DECsystem~10 Swapping Model

5.3 Model Comparisons

-7l

30
32
32
34
36

o [+4] W n [

13

[} [, ¥ 3 V) [ ] [aad




Table of Contents (cont.)

5.3.1 Definition of Performance
Measures

5.3.2 Tabular Results

5.3.3 Chen's Versus the Classical

Swapping Model

+3.3.1 Probability Structure
.3.3.2 Performance Predictions

5.3.4 Chen's Swapping Model:
Multi-class Versus
Single-class

5.4 Chapter Summary

Chapter 6 Conclusions and Recommendations

6.1 Conclusions
6.2 Recommendations for Future Research

Bibliography
Vita

Appendix

-vii=-

12

12
15

19
24




List of Figures

Spectrum of Computer Modeling Techniques
Single-resource Queueing Model
Finite Population Model

Central Server Model

Classical Swapping Model

Monitor Cycle Programs

Job State Transitions

Method of Stages

State Transition Diagram

Global Balance Equatijions

Local Balance Equations

Chen's Swapping Model

McKenzie Program Flow Chart

New Program Flow Chart
DECsystem=10 Job-Swapping Model
Probability Structure (Two Classes)
Two Classes

Chen's Model

~viii-

1-10

2-10

3-6
3-18
3-19
3-21
3-29

4-5

5-7
5-13
5-16
5-21




3-1
3~2
3-3

5~1
5~2

5-4

List of Tables

Transition Matrix and Service Rates
Example Calculations

Probability Transition Makix for
Chen's Swapping Model

System Configuration Parameters
Classical Swapping Model Results

Chen's Swapping Model Performance
Results

Important Probability Transition
Matrix Values

3-16
3-25

3-31
5-3

5-10

5-11




¥ o3

Abstract

\j>§ An improved model of the DECsystem-10 job-swapping
behavior was developed. This model combines a previously
developed closed gueueing network model with a job-swapping
model developed by Chen//fgéf 5).\yChen's swapping model
provides an approximate solution to a network gueueing model

with a state-dependent probability transition.

This combined model is then tested on a hypothetical,
though realistic workload containing both interactive and
batch jobs. The two classes of jobs are treated first as
separate classes, as one class having the weighted average
job characteristics of both classes, and as one class having
just the interactive job characteristics. The results of
these experiments and a comparison between Chen's swapping

model and the classical are presented.

The results of the experiment indicate that it is
important to model multiple classes for systems which have a
significant amount of batch activityu}JAlso, Chen's swapping
model provides a more realistic %38@1 of job-swapping

behavior for the DECsystem-10. Therefore, combining the

—x—




multi-class model with Chen's swapping model improves the
modeling accuracy for the DECsystem-10. Recommendations for
extensions to this multi-class Chen model are also

discussed.




Chapter 1

Introduction

o valuation (CPE)

1.1.1 Need for CPE

In recent years, science and engineering have become
more concerned with the economic aspects in their fields due
to increased costs of high technology and tighter £fiscal
budgets. Great attention has been given to the development
and refinement of techniques which help predict behavior of
systems and thus yield insights into what cost-performance

tradeoffs can be made (Ref 23:1).

Any system which is in the process of being designed,
procured, or modified must satisfy certain predetermined
performance specifications. This is especially true in
computer engineering where system specifications, reference
manuals, and user guides abound. Designers and engineers
use design and performance evaluation prediction techniques

to obtain systems which meet these specifications.

1-1




Introduction

Prospective users of a system use these techniques to
determine which combination of subsystems of components
comes closest to matching their requirements, given certain
cost constraints. Current users of a system use these same
evaluation techniques and tools to help make decisions about
existing systems concerning system upgrades and additions.
Therefore, performance evaluation is needed at all stages of

the life cycle of a computer product. (Refs 9:1,23:1-2).

Computer engineering is a fairly recent development and
therefore performance evaluation is less developed than
older branches of engineering, but definitely is not less
important . The products of computer engineering (central
processing units (CPU's), memory, rrinters, card readers,
tape drives, disk drives, etc.) are primarily designed to
perform certain functions related to the processing of
information. How well these systems execute their tasks is
a matter of tremendous technical, enonomic, and military

importance to the Air Force (Ref 9:3)

1.1.2 CPE Techniques

Techniques for evaluating a computer system can be
divided into two categories: measurement techniques and

modeling techniques. Measurement techniques involve using

1-2
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performance monitors to detect and analyze system events.
These monitors can be hardware oriented or software
oriented, and their use with benchmark programs is called
benchmarking. Modeling techniques, on the other hand, do
not directly involve the system in question, but deal with a

conceptual representation of the system (Refs 1, 9, 29).

These modeling techniques can be divided into four
categories (Ref 1):
1. Rules of thumb, e.g. CPU utilization should not
exceed 35 percent for on~line applications or 40
percent for batch applications.

2. Linear projection, e.g. "Computer useage doubled in
the last year, so it will double again next year.”

3. Analytical queueing models. -

4. Simulation models.

Another CPE technique discussed by Svobodova (Ref 29:48-49)
and more extensively by Sanabria (Ref 25) is empirical
modeling. This technique combines the linear projection
technique with benchmarking. Measurement data are collected
from the real computer system and regression or some other
curve-fitting technique is used to develop performance

prediction curves,
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Figure 1-1 Spectrum of Computer Modeling
Techniques (Ref 1:13)

These evaluation techniques involve increases in
accuracy as one moves from the very simplistic rules of
thumb to the very complex benchmarking techniques (see
Figure 1l-1). Unfortunately, the same increase in accuracy
also involves an increase in cost. The computer engineer
involved in CPE must then make tradeoffs as to the amount of
accuracy he can afford. These tradeoffs are extremely
prevalent when comparing the two most widely used types:

simulation and analytical queueing models.

There are three reasons for the increasing popularity
of analytical models over simulation models for computer

system modeling (Refs 1, 4, 11, 21, 23, 26, and 29):

- Analytical models capture the most important features
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of actual systems, i.e. jobs moving from one queue to
another waiting for service from independent devices
within the system.

- The assumptions of the analysis are realistic. General
device service time distributions, load-dependent
devices service times, and multiple classes of jobs can
be modeled.

- The algorithms that solve the equations of the model
are available as highly efficient queueing network
evaluation packages. Because of their efficiency and

simplicity, these models are cheaper than simulations
to develop and run.

1.1.3 Development of Analytical Models in CPE

The development of more flexible analytical modeling
techniques for computer system modeling has paralleled the
evolution of computer systemg from single-programmed, batch
systems to multi-programmed, combination interactive/batch

systems,

1.1.3.1 Single Queue, Infinite Population Model

The earliest techniques modeled the entire computer
system as a single resource with a single queue and an
infinite population of jobs (see Figure 1-2), This model was
used for the early batch computers, since the CPU was the
dominate resource and only one job could be in the system at

a time.
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FPigure 1-2 Single-resource Queueing Model (Ref 21:947).

1.1.3.2 Finite Population Model

With the advent of interactive systems, modeling the
system as a single-resource gqueue with an infinite
population of jobs became less realistic. Because there are
a finite number of jobs circulating within an interactive
system, the rate of arrival of new requests for service v-vill
tend to decrease as the gqueue length grows. The finite
population model, also known as the machine interference
model, was used to model this phenomena (see Figure 1-3). In
the early interactive systems, only one complete job could
be in memory at a time. The execution of the jobs, I/0
activity, and the swapping activity were not overlapped.

Therefore, program execution, I/O0 activity, and the swapping
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time were summed and used as the CPU service time (Ref

21:946-947).
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Fiqure 1-3 Finite Populaton Model (Ref 21:947).

—— ——— —— ——— — — —
———— —— —— T — — — —
— —— —— ——— ——— —— —

1.1.3.3 Central Server Model

With the development of true multi-programming, i.e.
more than one entire job within memory, the finite
population models became less realistic. The most
fundamental characteristic of jobs in a computer system is

that they alternate between CPU execution and being blocked
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from further CPU execution waiting for access to secondary
storage. With more than one job in memory, the 1/0 activity
of one job could be overlapped with the execution of another
job. A model which considers this type of behavior is shown
in Figure 1-4. Note that this model still does not consider

swapping times separately. )
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Pigure 1-4 Central Server Model (Ref 3).
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1.1.3.4 Classical Swapping Model

As more and more computing systems used swapping as
their memory management strategy, it became necessary to
more accurately model the job swapping activities. The
classical method to model job swapping explicitly was to add
a swapping device node after the terminal interaction node
(sée Figure 1-5). Thus, each job is swapped out after each
interaction with thé user at the terminal (Ref 20). To
improve the overall accuracy, two other improvements to the
interactive model were developed (Ref 2:249)

1. Multiple classes of jobs with each class having its
unique transition probabilities and node service
times.

2. Non-exponential service times using the method of
stages.

A more detailed account of these improvements and how they

were integrated into one model is given in Chapter 3.

1.1.3.5 Chen's Swapping Model

Chen (Ref 5) proposed a new approach to modeling

job-swapping behavior: that it be modeled by gtate-dependent

transition probabilities in a closed queueing network with a

1-9
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single class of jobs. Since an exact solution to this
problem does not <currently exist, Chen developed an
approximation algorithm that iteratively solves a closed
queueing network. Chen's model is described in more detail

in Chapter 3.

TERMINALS
SWAPPING DEVICE

O 1
-— —1 ] ee=
T S P
oo
P T —— _— 0 [ee———
(R P P

—— e
e~ —— —
A

SECONDARY STORAGE
DEVICES

e O T T

—  — - — — — — — — — —— o — o - — — —
v

]

1

1

]

1

1

|

1

|

|

1
_v_
| __
L __
L __
L __

1

!

1
@
)
a
]

Pigure 1~5 Classical Swapping Model (Ref 5).
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1.2 Problem Statement

1.2.1 Motivation for Research Objectives

The Avionics Laboratory at Wright-Patterson AFB is
responsible for research, development, and validation of
avionics systems for present and future aircraft in the Air
Force inventory. This includes the development and
validation of both the hardware (instrument displays,
control consoles, etc.) and software (the computer programs
that control the hardware) for navigational aids, weapons
delivery systems, and electronic warfare systems. The
laboratory is one of the most advanced facilities for the

development and validation of avionics systems.

One of the primary test beds for avionics system
development is the Digital [Electronics (Corporation's
DECsystem~-10 mainframe computer. The DECsystem=-10 is a
multi-programming, multi-processing, time-sharing computer
with real-time ©processing capabilities. It provides
high-level language support (FPORTRAN, PASCAL, COBOL, BLISS,
JOVIAL, and in the future ADA); assembly language support;

document and manual preparation programs such as editors,

1-11
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text formatters, and spelling checkers; and graphics and
plotting programs, Several mini-computers (PDP-11's) are
directly interfaced to the DECsystem-10. This allows
real-time communication between the DECsystem-10 and the
PDP-11 which are used to control testing and simulation of

current and experimental avionics systems.

Since the DECsystem-10 is such a vital Air Force
resource in the research and development of state~of-the-art
avionic systems, it is important that this resource is used
as efficiently and effectively as possible. To insure the
proper management of this resource, the system managers must
have the proper tools to predict the impact of future
workload changes, potential operating system changes, and
reconfiguration of hardware resources. With these tools,
the managers of the DECsystem-10 will gain a better
understanding of the factors impacting computer performance
and will be better able to make decisions to properly manage

the DECsystem-10.

1.2.2 Background

In 1977 McKenzie developed a computer program to solve
multi-class closed queueing networks with service centers

having different service disciplines, This program was used

1-12
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to solve simple finite population and central server type
gueueing models of the DECsystem~10, the results of which
helped the Avionics Lab to Jjustify the purchase of
additional memory. Both the results from McKenzie's limited
validation and Saxton's entire thesis (Ref 24), indicated
that more detailed models of the DECsystem-10 job-swappinhg
behavior were needed (Refs 19:141 and 24:107).

1.2.3 Research Objectives

1.2.3.1 Primary Objective

The primary objective of this thesis effort was to
improve the models of the DECsystem-10 by better modeling
the job-swapping behavior. This will enable the system
administrators to make more informed decisions concerning
the present use of the computer system resources, as well as
more accurate and responsive planning for future computer

system acquisitions.

1.2.3.2 Specific Objectives

In order to meet the above primary objective, the
following tasks were accomplished in this thesis effort:

1. The McKenzie program to compute performance measures
for closed, multi-class queueing networks was brought

1-13
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up on the CDC computer. The program had to be typed
in from a 1listing in the thesis and subsequently
debugged in order to make it runnable.

The program was modified to include an approximation
algorithm developed by Chen (Ref 5) to better model
the DECsystem-10 swapping behavior. By combining the
multi-class modeling capability of the McKenzie
program with Chen'’s algorithm, we now have a new, more
powerful tool to accurately model the performance of
an interactive computer system with job-swapping.

The modified program was run using a workload
consisting of interactive and batch 3jobs and the
results used to answer the following questions:

- Does Chen's swapping model improve the accuracy
of the performance predictions when compared to
the classical swapping model?

- Does combining Chen's swapping model and multiple
classes improve the accuracy of the performance
predictions? Specifically, is it important to
model an interactive computer system containing
both interactive and batch jobs with a
multi-class model versus using a single class
model where

* The single class has the weighted average of
the characteristics of the batch and
interactive jobs in the multi-class model;
or

* The single class has the characteristics of
the largest class of jobs in the system?

1.2.4 Scope of the Thesis

The the next chapter will discuss the objectives and
basic functions of computer operating systems. This will be
followed by a descciption of the DECsystem-10's operating

system in enough detail to determine how it affects job

1-14
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swapping. Chapter 3 provides a detailed discussion of the
state-of-the-art analytical gueueing model with a product
form solution developed by Basket, Chandy, Muntz, and
Palacios. Chapter 3 concludes with a detailed description of
Chen's swapping model and its underlying assumptions.
Chapter 4 contains a description of McKenzie's computer
implementation and how it was modified to include Chen's
algorithm. Chapter 5 presents the results of modeling a
hypothetical workload using the modified model to answer the
above questions. Finally, Chapter 6 will present a summary
of the conclusions as well as recommendations for future

work in this area.

1-15




Chapter 2

Operating Systems and CPE

The primary method of improving the performance of an
existing computer system without buying new and improved
hardware is to moaify the behavior of the program that
controls the computer system. This program is called the
operating system. Operating systems usually have built-in
software parameters which may be set to allow the system
administrator to implement various scheduling policies and
priority schemes. Poorly chosen settings of these operating
system parameters can cause inefficient use of system
resources. Therefore, it is important that the system
administrator has the tools to properly determine these
operating system parameters. Before discussing this problem
in detail and how it relates to the specific case dealt with
in this paper, we will first review some of the basic

objectives and functions of operating systems.
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2.1 ¢ . tem Obiecti

The operating system is a collection of system programs
(algorithms) designed to meet the following objectives (Ref
6:2):

- Provide the programmers with an efficient environment
for program development, debugging, and execution,

- Provide ' a range of problem-solving facilities
(application programs).

- Provide all this at the 1lowest <cost by sharing
resources and information.

4.2 Resource Manager Functions

In order to meet the above objectives, the operating
system must efficiently manage the systems's resources.
Therefore, its primary role is that of resource manager. It

must accomplish the following (Ref 18:8):

1. Keep track of the resources.

2. Enforce policy that determines who gets what, when,
and how much.

3. Allocate the resources.

4. Reclaim the resources.




b

Operating Systems and CPE

The operating system's primary role can be broken down
by resource type: memory, processors, devices (disk drives,
tape drives, printers, etc.), and information (programs and
data such as editors, compilers, file directories and other
software resources). Below are listed the resource
management functions by type and typical names given to some

of the routines that perform these functions (Ref 18:9-10):

- Memory Management Functions

1. Keep track of the resource (memory). What parts
are in use and by whom? What parts are not in
use (called free)?

2. If multiprogramming, i.e. more than one program
in execution at one time, decide which job gets
memory, when it gets it, and how much.

3. Allocate the resource (memory) when the Jjobs
request it and the policy of 2 above allows it.

4. Reclaim the resource (memory) when the job no
longer needs it or has been terminated.

- CPU Processor Management Functions

l. Keep track of the resource (processors and the
status of jobs). The system program that does
this has been called the traffic controller.

2. Decide who will have a <chance to wuse the
processor; the job scheduler chooses from all the
jobs submitted to the system and decides which
one will be allowed into the system, i.e. have
resources assigned to it., If multiprogramming,
decide which job gets the processor, when, and
how much,

3. Allocate the resource (processor) to a job by
setting up necessary hardware registers; this
system program is often called the djispatcher.
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Reclaim the resource (processor) when the job
relinquishes processor usage, exits from the
system after job completion, or exceeds allowed
amount of usage and aborts.

- Device Management Functions

1,

Keep track of the resource (disk and tape drives,
channels, control units); this 1is typically
called the 1/Q traffic controller.

Decide what is an efficient way to allocate the
resource (device). If it is to be shared, then
decide who gets it, and how much he is to get;
this is called 1/Q scheduling.

Allocate the resource (device) and initiate the
I/0 operation.

Reclaim the resource (device). In most cases when
the I/0 terminates, the device is released
automatically, but the operating system must be
informed of the new status of the device.

- Information Management Punctions

1.

4.

Reep track of the resource (information), its
location, use, status, etc. These collective
facilities are often called the f£ile system.

Decide who gets use of the resources, enforce
protection requirements, and provide acessing
routines,

Allocate the resource (information), e.g., open a
file.

Deallocate the resource, e.g., cloge a file.
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The TOPS-10 Monitor performs the accounting,
scheduling, resource allocation, and service routines
necessary to operate in a multiprogramming, time-sharing
environment. It both controls user 3jobs and provides
services to them. The monitor gives the appearance of a
single-user machine to all the users on the DECsystem-10 by
rapidly switching control to each user. It manages all I/0
operations, according to requests from user programs and
from device interrupts. It attempts to allocate all system
resources in such a way as to give the best overall system

performance (Ref 8:INTRO-~10).

2.3.1 Monitor Programs

The monitor consists of many separate and more or less
independent programs which are called according to events
which occur within the system. The system programs are
divided into two types depending on whether the program

executes synchronously or asynchronously. Synchronous

1. The clock interrupt is an AC line generated interrupt and
therefore occurs every 1/60 of a second. This time interval
has been given the name "jiffy"™ and the term occurs
frequently in DECsystem-10 literature.

2-5




Operating Systems and CPE

system programs execute once between system clock

1

interrupts and complete their function before the next

clock interrupt. After each clock interrupt, the monitor
cycle is executed followed by the running of a user job
selected by the Job Scheduler (Ref 8). The synchronous
system programs are the

CLOCK1 The system program which acts as the "main®
calling program for all other system
programs., This program contains the code
used by the Job Scheduler to make the actual
resource assignments.,

Job Scheduler The system program which selects the next job
to run in the remainder of the jiffy and
controls the allocation of system resources.
This program is also known as SCHED.

Command Processor ‘
The system program which reads in a typed
command and interprets it.

Context Switching Routine
The system program which transfers control to
the user job selected by the Job Scheduler.

Asynchronous system programs execute on an as needed
basis by jobs within the system and may have program cycles
lasting longer than one jiffy. The asynchronous system
programs are described below

Job Swapper The system program called by the Job
Scheduler to keep as many runnable jobs in
memory as possible, Even though it is called
each time during the execution of the Job
Scheduler (a synchronous program), the Job
Swapper is not synchronous since the swapping
in and out of a job usually takes several
jiffies to complete. The Job Swapper
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"remembers" what it was doing when called by
the Job Scheduler. Each time the Job Swapper
is called, it continues processing where it
last terminated during the last jiffy.
2 Processor Routine

The system program which executes whenever a

job requests I/O service such as disk reads

or writes.

uuo

Core Management Routine
The system program which dynamically
allocates memory as needed by other system
programs or user jobs,
The system programs described above and how they
interact with one another during a clock interrupt is shown
in Figure 2-1. All dotted arrows represent asynchronous

events which may or may not occur within a monitor cycle,

depending on the state of the system (Ref 8).

2.3.2 Job States

The next state transition that a job can enter depends
on the current gtate of the job (Ref 6:31-35). The job state
is represented by many status variables maintained within
the monitor system program and job status tables. A job can

be in one of four states (Ref 8:5-1):

2., Unimplemented User Operations (UUO) are machine language
operation codes which directly call the monitor to execute
supervisor level tasks such as I/0 requests to system
peripherals.

L T . o S - ket S
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1. The job is in a processor queue, has memory, and is
running on a CPU,

2. The job is in a processor queue, ready to execute on a
CPU. As defined by DECsystem-10 literature, a job in a
processor queue is defined to be ready to execyte if
the job is not waiting for a shareable resource™,even
though the job may have no memory and must first be
swapped in.

3. The job is in a short-term wait state. Jobs in this
state were previously in the running state, but
requested the use of a shareable resource. Jobs in
the short-term wait state can not be selected to
execute until they are assigned the shareable resource
and are once again runnable,

4. The job is in a long-term wait state. Jobs in this
state were previously in the running state, but then
requested the use of a non-shareable resource.
Non-shareable resources are distinguished from
shareable resources by the length of time the job may
have to wait to be assigned the resource,
Non-shareable resources include such things as 1line
printers or card readers, as well as less obvious
non-shareable resource such as a response from a
terminal. '

The possible states of a DECsystem~l0 are summarized in
Figure 2-2. The states labeled HPQ 1-~15, PQl, and PQ2 are
the processor queues and are discussed in the following

section.,

3. A shareable resource is some part of the system, either
hardware or software, which can be used by only one job at a
time, but is shared among different jobs over relatively
short periods of time. Examples of shareable resources are
I/0 channels and disk drives used to satisfy disk 1I/0
requests

2-9
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2.3.3 Monitor Queueing Structure

Scheduling in the DECsystem-10 is based on the use of
gqueuyes and wait state codes. The jobs in the system are
maintained in a master set of queues, which are logically

divided into long-term wait queues and processor queues.

2.3.3.1 In-core Versus Out-core Chains

Each queue in the long-term wait gqueues and processor
queues are separated into two chains: one contains all the
jobs in the queue that are jin-core and the other contains
all the jobs that are gout-core (have no memory). This
breakdown enables efficient scanning of the queues by the
Job Scheduler and the Job Swapper. The scheduler only has to
scan jobs in the in-core chains to find a runnable job with
memory. The Job Swapper only has to scan jobs in the
in-core chains to £ind a job to swap out to make room for a
higher priority job or scan the out-core chains to find a

job that needs to be swapped in (Ref 8:SCH-8).

2.3.3.2 Processor Queues

Jobs in the processor queues can either be running,
ready to run (with or without memory), or in a short-term

wait for a shareable resource. The processor queues are the

2-11
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high-priority queues (HPQ's), PQl, and PQ2. Each are

described below (Ref 28:2-1):

HPQ's (Up to 15 levels, called HPQl through HPQ15)
contain jobs that require real-time response,
such as the 1line-printer spooler and the
card-reader spooler system programs. These
gueues are scanned first by the Job Scheduler
to find an executable job.

PQl1 Contains jobs that require fast response,
such as time-sharing jobs. This queue is the
next most often scanned processor queue.

PQ2 Contains jobs that require long-term
computing, such as those that compile
programs. Jobs in this queue are scanned
least often by the Job Scheduler, since fast
response is not necessary.

In addition to providing a priority structure for the Job

Scheduler to scan for an executable job, it establishes a

priority structure for the Job Swapper. The priority

structure, though, is exéctly reversed., The Job Swapper
first scans PQ2, PQl, and then the HPQ's to find a job it
can swap out, The Job Swapper can not swap-out jobs
performing disk I/0's and tries to avoid swapping out an
executable job. Therefore, jobs in long-term wait states
and other short-term wait states besides disk I/0's are the

Job Swapper's primary target.

2,3.3.3 Long-term Wait Queues

The long-term wait queues hold jobs that are in a

2-12
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long-term wait state. The queues and their purpose are
described below (Ref 28:2-3):

CMQ Command Wait Queue. The user has typed a
monitor command that cannot be executed until
the command program is in memory, and the
program is not in memory.

TIOWQ Teletype I/0 Wait Queue. Waiting for the user
to type a response or waiting for the device
to print output already sent to it.

JDCQ DAEMON Wait Queue. The job is waiting for
service by DAEMON. The DAEMON is a system
program which runs as a user job and performs

various functions such as recording
accounting data or error logging required by
other user jobs. It is, in effect, a

non-resident portion of the monitor.
EWQ : Event Wait Queue., This queue encompasses many
types of resource allocation waiting lines

"such as waiting for a magnetic tape
- controller, etc.

Jobs in a long-term wait queue are requeued to the rear of

the PQl when their long-term wait is satisfied.

Describing the above as queues is actually a misnomer,
Having a queue implies that some order exists in the queue,
i.e. first-come~first serve (FCFS), last-in-first-out
(LIFO), etc. In the long-term wait queues the order in
which they leave the queue is not dependent on their order
in the queue., Instead, the order in which they leave is
totally dependent on the job characteristics. For example,

even though user A may arrive before user B to the terminal

2-13
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I/0 wait queue (TIOWQ), if user B responds first, he leaves

the gueue before user A.

The main purpose of having long-term wait gqueues is two
fold:

- Remove jobs from the processor queues so that the Job
Scheduler does not waste time scanning jobs that are
not expected to become runnable for long periods of
time.

- Provide a set of queues that the Job Swapper can scan

first to £find a job to swap-out to make room for other
jobs.

The important thing to note here is that when there are more
jobs than can fit in memory, jobs in the long~term wait

queues will be swapped £rom the in-core chain to the

out~core chain before jobs in the processor queues,

2.3.3.4 Processor Queue Time Slices

Other factors, besides which queue the job is in,
affect the likelihood that a job will be swapped. These
include how 1long it can be in memory without becoming
eligible for swap-out and its position in the queue. These
two factors are determined by the time slice assigned to a

job.

When a job enters one of the processor queues, it is
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assigned a time slice, The time slice consists of two
components: the in-core protect time (ICPT) and the quantum
run time (QRT). The ICPT and QRT are actually counts, The
ICPT is the nuﬁber of times the Scheduler can try to execute
the job before the job becomes eligible for swap-out. The
QRT is the number of times the Scheduler can execute the job

before it is requeued to the rear of a processor queue.

Each time the Job Scheduler scans a job to see if it is
executable, the ICPT is decremented. Note that the Job
Scheduler may not execute a job because it is in some
short-term wait state, but the ICPT is still decremented.
When this count reaches zero, the job becomes eligible for
swap out. The ICPT provides a mechanism wherein the swapper
is prevented from immediately swapping out a job which has
just been swapped in, and in effect "locks™ the job in

memory until its ICPT is zero (Ref 8).

Each time the Job Scheduler chooses a job to execute,
that job's QRT is decremented. When the QRT reaches zero,
the job either requeues to a lower priority queue, e.g. PQl
jobs requeue to the end of the PQ2 queue, or the job
requeues to the rear of the queue it is in, e.g. PQ2 and
HPQ jobs requeue to the rear of their respective gqueue.

When treated in this way, the QRT limits the amount of CPU
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time the job receives in a particular queue, thus providing
a fairness consideration in assigning CPU time. Also, since
the Job Swapper usually scans the processor queues from back
to front, jobs that have most recently expired their QRT and
were requeued to the rear of the queue are more likely to be
swapped out (Ref 8). This provides a fairness consideration

in assigning the use of main memory.

POL Ti Sl

The PQl time slice is the amount of time that a job
receives fast interactive response after being swapped in.
The QRT of the PQl queue is usually much smaller than other
processor dqueues in order to provide quick response to
interactive jobs. The short QRT will be sufficient for
interactive jobs before they become blocked to a long-term
wait state, e.g. waiting for terminal response. The more
CPU-intensive jobs will expire their QRT and be requeued to
the lower priority PQ2 queue. There, they will be assigned
a new, much larger QRT, but now have a lower priority for

execution and a greater likelihood of being swapped out.
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PO2 Ti S1i

For PQ2 jobs, the parameters for ICPT and QRT control
the bias of the scheduler for throughput versus response and
for I/0 versus CPU. Throughput versus response is controlled
by increasing or decreasing the magnitude of Dboth
parameters. As the parameters are increased, jobs expire
their time slices more slowly, swapping rate decreases, and
less core is allocated for swapping. These effects improve
throughput, but average response is correspondingly degraded
because interactive jobs wait longer to swap in. When you
decrease both parameters the effect is reversed. 1I/0 versus
CPU response is controlled by changing the ratio of ICPT to
QRT. Increasing only QRT favors CPU-bound jobs. 1Increasing
only ICPT favors I/0-bound jobs, while reducing it tends to
favor CPU-bound jobs (Ref 28:5-3).

2.4 Chapter sSummary

The following are the important aspects to remember

about the TOPS-10 Monitor

- The Monitor executes every jiffy at which time the Job
Scheduler selects a job to run the remainder of the
jiffy.
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Jobs in the system can be in one of four states
1. Executing on the CPU.

2, Ready to run but waiting for its turn to execute
on the CPU.

3. In a short~term wait state waiting for a
shareable resource.

4. In a long-term wait state waiting for a
non-shareable resource.

Jobs in the system wait in processor queues for the CPU
or for shareable resources while jobs waiting for
non-shareable resources wait in the 1long-term wait
queues. Interactive jobs wait for terminal response in
a long-term wait queue.

The processor queues and the long-term wait queues are
divided into in-core chains (jobs that have memory) and
out-core chains (jobs without memory that will have to
be swapped in).

Jobs in the long-term wait queues will be swapped from
the in-core chain to the out-core chain before jobs in
the processor queues.

The time slices assigned to jobs by the Job Scheduler
are made up of two components: the incore protect time
(ICPT) and the quantum run time (QRT),

* The ICPT provides a mechanism where in the swapper
is prevented from immediately swapping out a job
which has just been swapped in, and in effect
"locks"™ the job in memory until its ICPT is zero.

* The QRT limits the amount of CPU time the job
receives in a particular queue, thus providing a
fairness consideration in assigning CPU time.

= The short QRT in PQl will be sufficient for
interactive jobs before they become blocked
to a 1long-term wait state while more
CPU-intensive jobs will expire their QRT and
be requeued to PQ2 where they will be
assigned a new, much larger QRT.
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The longer
processing
amounts of
PQ2 QRT

schedulers
versus I/0

QRT in PQ2 provides the extensive

needs of Jjobs needing 1large
CPU processing. The ratio of the
and the ICPT determines the

bias towards CPU-intensive Jjobs
intensive jobs.
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Chapter 3

Analytical Modeling

3.1 Early Oueueing Network Models

Jackson (Ref 14) and Gordon and Newell (Ref 10) give

solutions for the case of networks of gqueues with the

following assumptions

1.
2.
3.

There are a finite number of nodes, M.
There are a fixed finite number of customers, N.

The manner in which customers visit the various
resources is governed by a transition matrix P =
[p.:], where p.. is the probability that a customer
deﬂlrting from hbde i will next visit node j.

The service time distributions at nodes are
exponentially distributed.

The service rate may be a function of the number of
customers. :

All customers are identical in that their routing

probabilities and service times at the M nodes are the
same.,

For this class of models, a state of the model is given

by the number of customers at each node. Thus the set of

states is just
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(nl, n2,...,nM) ] 2: n, =N

The equilibrium state probabilities are given by

M
n.
P(n r n ’..on ) gC n A . 1
1 2 M i=1 i
r‘}[i
u; (j)
j=1 *
where
A The mean arrival rate to the it8 node.
ui(j) The instantaneous departure rate from the ith
resource when there are j customers queued at
this node.
C The normalization constant is chosen so that
all the equilibrium state probabilities sum
to one.

The calculation of C can be very time consuming since

the number of states is

M+N-1
N

However, methods of calculating C have been found which

2

increase only as MN (Ref 3) allowing larger gqueueing

networks to be solved.
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3.2 Multi-cl ; ing Network Model

The earliest queueing models developed by Jackson and
Gordon and Newell, and the computational algorithm derived
by Buzen suffered from two limitations:

1. Only one <c¢lass of customers was allowed in the
network.

2, All the service time distributions were exponential.

Recently developed queueing models addressed many of
the important aspects of épplying queueing models to
time;sharing computer systems such as multi-class jobs and
non-exponential service time distributions. Still, no one
unified model existed to describe all these aspects of

time-sharing systems.

The model developed in reference 2 by Basket, Chandy,
Muntz, and Palacios and described below accomplished this
unification. It combined recent results on the networks of
queues of several different service disciplines and a broad
class of service time distributions with earlier results on
networks of queues containing different <classes of
customers., This model thus more accurately describes a

time-shared computer system,
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3.2.1 Variables in the Model

The model describes a system with an arbitrary but
finite number (N) of service centers with an arbitrary but
finite number (R) of job classes. The routes through the
network of service centers for the R classes of jobs is
determined by a probability transition matrix
P = [P, 1, where P,

i,r:j,s i,r:j,s
r job at service center i going to service center j as a

is the probability of a class

class s job. The transition matrix defines a Markov chain

assumed to be decomposable into m subchains, El,Ez,...E n°

Let n;, be the number of jobs of class r at service

center i in state Sj of the network model. Also let

M(S/Ej) = Z n

(i,r) e Ej

ir
be the total number of jobs within the subchain. Then

m
M(S) = Z M(S/E

.)
j=1 J
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is the total number of jobs in the network. A system is
closed when M(S/Ej) = constant, 1 < j < m.

3.2.2 Open Network Outside Arrival Processes

In an open network the arrivals to node in a queueing
network can be external from the network. The £ixed
probability of an outside arrival of a class r customer at
service center i is dire The probability of a class r job

leaving the system from service enter i is

1o 2

1<j<N
1<s<R

pi,r;j,s

The external arrival process can be state dependent and

is of two general types

l. The arrival rate, A (M(s)) is dependent on the total
number of customers in the system, M(S).

2. The arrival rate, A ;(M(S/E;) is decomposed into m
Poisson arrival streéams c%rresponding to the m
subchains described above. The m arrival rates are
dependent on the number of customers in the subchain,
M(S/Ej).
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3.2.3 Service Time Distributions

Exponential, hyperexponential, and hypoexponential
distributions are eligible service time distribution for
this model. Also, any service time distribution that can be
represented as a network of states can be used as a service
time distribution. In this method of stages technique, Ui
represents the service rate of a job in service stage 1 at
service center i who is in class r. There are Sir service
stages for a job in class r at node i. The probability of

going to the next stage is a.

irl? while the probability of

completing service is b.

irl® These concepts are illustrated

in Fiqure 3-1.

rd
e
r
[
7~
[
[a]
[ V]
7
™
"
0

Figure 3-1 Method of Stages.
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3.2.4 State-dependent Service Rates

Three types of state-dependent service rates can be
incorporated into the Basket, et. al. model

1. The service rate at a service center can depend on the
total number of jobs at that service center. This
form of state-dependent service rate is useful to
model multiple, identical servers. If there are K.
identical servers at service center i, then by takiné
the service rate with one job present and multiplying
it by the following function

R4

n.
i’

k, n, > k

1 K« ni < k,

x;(n;) =
we obtain the service rate for service center i.

2. The service rate of a job class can depend at a
service center on the number n,, of class r jobs at
service center i.

3. The service rate of a service center can depend on the
number of jobs at other service centers in the
network. -

Note that these various forms of state-dependent service

rates can be mixed.
3.2,5 Service Center Types

Service centers can be one of four types:

1. The service discipline 1is first-come-first-served
(FCFS).
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- All customers have the same service time
distribution at this service center.

- The service time distribution must be a negative
exponential.

- Only state-dependent service rate types 1 and 3
can be used.

This type of service center is most often used to
model the I/0O devices such as disks, drums, and tape
drives in a computer system.

The service discipline is processor sharing (PSS},
i.e. when there are n, customers in the service
center, each is receiviné service at a rate of 1/n,
times the service center's rate for its job class. .

- PBach class of customer c¢an have a distinct
service time distribution.

- All three service time distributions can be
used.

- All three state-dependent service rate types can
be used.

This type of service center is most often used to
model a central processor that uses a round-robin
scheduling algorithm. This is appropriate since
round-robin scheduling approaches the processor
sharing service time as the round-robin time quantum
approaches zero,

The number of servers in the service center is greater
than or equal to the maximum number of customers that
can be at this center in a feasible state (this is the
infinite server (IS) case).

- Each class of <customer can have a distinct
service time distribution.

- All three service time distributions may be
used.

- All three state-dependent service rate types can
be used.

3-8
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This type of service center is most often used to
model the terminal users in a time-sharing computer
system.

4. The service discipline is preemptive-resume last-come-
first-served (LCFS)

- Each class of customer can have a distinct
service time distribution,

- All three service ¢time distributions can be
used.

- All three state-dependent service rate types can
be used.

This type of service center is most often used to

model a central processor in which jobs can preempt
other jobs using the processor.

3.2.6 States of the Model

The state of the model 1is represented by a vector
(xl r Xy ,...xN) where X; represents the state of service
center i. The representation of the state of the service

center is dependent on the type of service center.

3.2.6.1 Type 1 Service Center

If service center i is of type 1, then X; =

(xil 2 7 ""xik)' where k = ng is the number of customers
at center i and xij (1 < 3 <« n,, 1< xij < R) is the class
of customer who is jth in FCFS order. The first customer is

3-9
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served while the remainder are waiting for service. This
type of service center state space is very large since one
must not only account for the number of customers of each
type, but the order of the queue must be properly

represented.

3.2.6.2 Type 2 and Type 3 Service Centers

If service <center i is of type 2 or 3, then

is a vector
h

X, = ( Y, where

i ¥i1 r Viz re+-ViR
t

(mlr R PR mk:) where k = Sir- The 1
Vir is the number of customers of class r in center i and in
the 1P

Vir
component of

stage of service. The number of stages for a class

r customer at service center i is s, Note here that a

ir’
state is distinguished from another state by the number of
customers, the class of the customer, and the stage of
service of the customer, but not the order of the customers
at the service center since there is no waiting line for

these service disciplines.

3.2.6.3 Type 4 Service Centers

If the service center is of type 4, then
X; = ((rl, ml) ,(tz, m2), vea (rn ,mn)) where the ordered

pair (rj, mj) describes the jth customer in LCFS order,

3-10
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i.e. rj is the class of the customer and my is the stage of
service of the customer. Note again that like the type 1
service centers, a queue exists and one must take into
account the order of4customers in the queue if there is more

than one class.
3.2.7 Calculating Equilibrium State Probabilities

L 3.2.7.1 Balance Equations

The balance equation technique for the solution of

equilibrium state probabilities is based on the concept that
the rate of customers transitioning into a state is equal to
the rate of customers transitioning out of the state, or

more formally, for all states, S

3
:E: P(S.) [rate of flow sj -->Si ] =
all states J
S.
J P(si)[rate of flow out of Si 1

These are the global balance equations of the queueing
network. The balance equations establish a set of linear

equations which can then be solved for the equilibrium state

probabilities.

3~11
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A second type of balance equation for a queueing
network exists, that of independent (local) balance. This
concept equates the rate of flow into a state by a customer
entering a stage of service to the flow out of that state
due to the customer leaving that stage of service. A
customer can be associated with a stage of service in the
following ways

1. If the customer is in service at a service center
(always the case in type 2 or 3 service centers), then
he is in one of the stages of his service time
distribution at that service center.

2. If the customer is gqueued at a service center (only
possible for type 1 or 4 service centers), then he is
in the stage of his service time distribution he will
enter when he is next served. For FCFS this is stage

1; for LCFS this is the stage of service when last
preempted.

3.2.7.2 Product Form Solution

Before presenting the solution to this type of queueing

network, we must first define a few additional terms.

Additional Notati

Bach of the subchains defined above has associated with

it a set of linear equations of the form

3-12
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:E: ®irPi,r;j,s ¥ 945 = ©4sr  (3¢8) By
(i,r) € Eg

where qjs is the rate of exogenous arrivals of class s
customers to service center j. If qjs=0 (j,s) Eer then the
network is closed with respect to Ek' In the case of closed
networks, the above linear equations do not provide a unique

solution. By setting the value of one of the eij a unique
solution can be obtained. For convenience, one of the e,

is set to 1, which allows the rest of the e to be

interpreted as relative arrival rates of class r customers
to service center i (relative in that the arrival rates eir

times the rate of the e._ that was set to 1), Note that the

ir
network may be closed with respect to less than m of the

subchains Ek'

One more term that appears in the product form solution

needs to be defined. This is the probability that the cth

h

class at service center i is in the 1t stage of service,

denoted as

1
A = IT a; ..
irl =1 irj
where airj is defined as in Figure 3-1.
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The Theorem

For a network of service stations which is open,
closed, or mixed in which each service center is of type 1,

2, 3, or 4, the equilibrium state probabilities are given by

P(S = xl,xz,...,xN) = C d(8) fl(xl) fz(xz)...fN(xN)

where C is a normalizing constant chosen to make the
equilibrium state probabilities sum to 1, d(S) is a function
of the number of customers in the system, and each fi is a

function that depends on the type of service center i.

If service center i is of type 1, then

ny

n.
= 1
£;(x,) (1/u;) n [eixij]

i=1

If service center i is of type 2, then

R sil’.‘
m,
irl
£i(x) = ngt r] rT [eirAirl/uirll (1/m; 1)
r=] 1l=1
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If service center i is of type 3, then

R Sir
. ®irl
fi(xi) = [] [T [eirAirlluirll (l/mirll)
r=1 l1l=1

If service center i is of type 4, then

ny

£.(x.) = [e._ A, (1/u; )]
it .FL 1rj 1rjmj 1rjmj
J=

If the arrivals to the system depend on the total number of
jobs in the system, M(S), and the arrivals are of class r

and for center i according to fixed probabilities Pjr then

M(S)-1
da(s) = rT Adi),
i=0
If we have the second type of state-dependent arrival

process, then

n M(S/Ej)-l

d(s) = [T TI A(i).

j=1 i=0

If the network is closed, d(s) = 1.
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3.2.8 Example Problem

To illustrate the concepts defined above, a very simple
example will be formulated. First, the global and
independent balance equations for the problem will be

defined using the "rate-in = rate-out®™ concept. Then the

Table 3-1 Transition Matrix and Service
Rates.

Probability Transition Matrices
by Job Class

Job Class 1 Job Class 2

0.6 0.4 0.8 0.2
1.0 0.0 1.0 0.0

Service Rates by Job Class

Node Job Class 1 Job Class 2
1 1.0 1.0 (processor
' sharing)
2 2.0 1.0 (infinite
server)
Ny, = 2 N, = 2 8. = ] Raz

2 ir

— e ——— — — T — — T G— — — i S— d——— —— — — — t— ——
— — v — — — — —— —— ——" G — — T v— — — — —— —
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equilibrium state probabilities will be solved for using the
product form solution., These solutions will be verified by
substituting the values in some of the balance equations to
demonstrate that they do indeed solve the balance

equations.

The example will consist of a closed queueing network
with two service centers. There will be two classes of jobs
with two jobs from each class in the network. Service
center 1 will use the processor-sharing service discipline,
while service center 2 will use the infinite server service
discipline. This network is a very simple model of an
interactive time-sharing computer system where service
center 1 represents the computer and service center 2
represents the terminal |users. The values of the
probability transition matrix and service rates are shown in

Table 3-1 along with a summary of the problem statement.

3.2.8.1 The Balance Equations

The state of the systeﬁ can be represented as an
ordered 4-tuple ("11'"21'"12'"22) where the first subscript
represents the service center and the second represents the
class. Therefore, ny, is the number of jobs at service

center 1 from job class 1.

3-17
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Given the transition matrix and service rates in Table
3~1, the state transition diagram is as shown in Figure 3-2.
Using the diagram in Figure 3-2 the global and local balance
equations can be derived. The globél balance equations of
this example are shown in Figure 3-3. The local balance

equations are shown in Figure 3-4.

— . — G — — — — — ————— — —— A ——— T — — — — — —

Figure 3-2 State Transition Diagram.
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3.2.8.2 The Product Form Solution

Since there are no stages of service in either service
center, the function fl(xl) and f2(x2) can be simplified to

the following

2
m

= 1r

£,(x;) = n,! JJ; tey /u; 1 *F(1/my 1)
2
m

= 2r

fz(xz) = }]; [e2r/u2tl (1/m2r!)

Solving for the e, above for this example, we get the

following linear equations for class 1 jobs

+ e

€11 = -6eyy + ey

.4ell = e21

and for class 2 jobs

el2 = _8e + e

12
2e1, = ey

22

which yield the following solutions for the eir's
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e; ® 1.0

ey = 0.4

€, = 1.0

€,y = 0.2

Table 3-2 Example Calculations

| |
| |
: State fl(xl) fz(xz) P(state) :
I (2,2,0,0) 3/2 1 1.5C = ,670 |
: (1,2,1,0) 3/4 o4 .3C = ,134 :
: (2,1,0,1) 3/2 2 .3C = ,0356 :
: (1,1,1,1) 1 +08 .08C = ,0356 :
: (0,1,2,1) 1/2 .016 .008C = ,00356 :
: (1,0,1,2) 1 .008 .008C = ,00356 }
: (0,0,2,2) 1 . 0016 .0016C = ,000715 :
: (0,2,2,0) 174 .08 .02C = ,00894 }
| (2,0,0,2) 1 .02 +02C =,00894 |
: 2.2376C = 1 => :
: C = .4469 :

The results of the computation are shown in Table 3-2.

The solutions can be verified by substituting them into some
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of the balance equations. For example, substituting the
equilibrium probabilities into the 24th independent balance

equation, we get

(.00894) (1) (2) (1) = (.134)(1)(1/3)(.4)
.01787 = .01787

and for the 17th balance equations

(.003575) (1) (1) (1) = (.00894) (2) (1) (.2)
.003575 = ,003575

Therefore the product form solution of the above
theorem provides solutions to the balance equations of this

problem.

3.3 Chen's Swapping Model

The classical swapping model described in Chapter 1,
along with the inclusion of multi-class jobs and
non-exponential service times, provides a very flexible
model of a computer system and its job swapping behavior.

But the model still is not completely realistic; job
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swapping behavior is more complex and should depend on the
main memory size, the number of jobs competing for memory,

and the job sizes.

Chen (Ref 5) proposed a new approach: that job swapping
behavior be modeled by state-dependent routing probabilities
in a closed queueing network with a gingle class of jobs.
The probability that a program needs to be swapped in (or
out) is expressed as a function of the system state, the
individual job characteristics, and main memory size.
Unfortunately, this type of queueing model has no known
exact solution. Therefore, Chen developed a
successive-approximation algorithm that iteratively solves a
closed queueing network. When two successive iterations
yield results that are within specified tolerances of each
other, the swapping model is solved. Chen's model and

algorithm are described below.

3.3.1 variables in the Model

First we will consider a simple model of an interactive
computer system described by Chen (Ref 5) and shown in
Figure 3-5. This system consists of one CPU, one disk, one
swapping drum, and a set of terminals. Queues exist for the

CPU, swapping drum, and disk, but no queue is necessary for
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the terminal node since there is a "server" (terminal user)

at each active terminal.
The variables in the model are

- Number of jobs in the system (N).

- Main memory size (user area) (M).

- Average job size (J).

- Average CPU service time (l/ul).

- Average disk I/0 time (l/uz).

- Average time to swap a job in and out of memory (1/u3).
- Average user think time (1/u4).

- Averade CPU time needed per interaction (TCPU)'

- ?vera?e number of disk I/0 requests per interaction
N .
DIO

- Average job size (J).

These variables above are used to calculate the
probability transition matrix P = Pij where Pij is the
probability a job being serviced at node i will request the
service of the node j. In terms of the context of the

model, the meaning of some of the important Pij's are given

below

Paq The probability that the job is not in main
memory and needs to be swapped in.

Ps1 The probability that the job is already in
main memory and does not need to be swapped
in.
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Pl1 The probability that the job's time gquantum
has expired

P12 The probability that the job needs
information on a disk file or needs to write
its results to a disk file.

P13 The probability that the main memory size is
not sufficient and the job must be swapped
out.

The state-dependent probabilities in Chen's algorithm are
Pll' P43, P4l' and P13. Note that P41 and P13 are always
zero in the simpler classical swapping model contained in
Ch-putr 1. A general form of the probability transition

matrix in Chen's model is shown in Table 3-3.

3.3.1.1 Derivation of 914 and P12

.

Consider a typical sequence of events where i
represents the job leaving the CPU for an interaction at the
terminal node and ‘c' represents the job requesting another
CPU service of l/u1 seconds (on the average)l. A typical

sequence would then look like
¢C...Cicc...cicc...
The number of CPU requests before an interaction would then

be geometrically distributed and the average number of CPU

service completions per interaction, NCPU’ would be

3-30
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(1)

Table 3-3 Probability Transition Matrix
for Chen's Swapping Model

: l
| |
P P12 P13 P1s !
| | |
| 1.0 0.0 0.0 0.0 |
| |
2y 0.0 Pys 0.0 |
| I

The average CPU time needed per interaction is equal to the
product of the average number of times the job requests CPU

service times the service rate or

Tepy ™ l/u1 N = (l/ul)(l/P

cPU 14’

therefore we have

P14 = 1/(u )

1 Tcpu
(2)

It follows immediately that since there are NCPU CPU service

completions and NDIO of them must have been due to an 1/0
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request, then

P12 = Np1o/Nepy = ¥p1o Pig

(3)

3.3.2 Program Swapping Behavior

The job swapping behavior is represented by the
state-dependent routing probabilities P43 and P13' Since
there are several memory management schemes that can be
implemented in an operating system, the expressions for P43
and Pig will vary from system to system. Chen derived
expressions for these probabilities that are reasonable for
the TOPS-10 Monitor on the DECsystem-~10. Their derivations
and the assumptions for their derivations are discussed

below.

3.3.2.1 Derivation of P43

The assumptions made for deriving P43 are as follows

(Ref 5:955)
1. Each job in the main memory is allocated the same
amount of memory. Therefore, the maximum number of

jobs that can be allocated in the main memory
simultaneously is a constant and denoted by A.

A= |M/J)
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This assumption is Jjustified since main memory is
partitioned into a fixed number of ©parts and
interactive jobs usually will fit in the same number
of partitions.

2. Among all jobs in the main memory, the jobs in the
"think® mode have the highest priority to be swapped
out if memory space is needed for the jobs to be
swapped in. This assumption is justified since many
computer systems use this memory management strategy
(Ref 5). Jobs in the "think"™ mode are very unlikely to
need CPU service in the near future. This is true
since the average think time is measured in seconds,
while most other activities in the system occur in the

millisecond or even microsecond range. In the
DECsystem-10, jobs contained in the TIOWQ
correspond to jobs in the think mode.

Let ny denote the number of jobs at node i. If the
total number of jobs in the system is less than the number
of jobs that can fit in memory (N < A), then no swapping
activity is necessary. In most cases, though, N is greater
than A, and so N - A jobs cannot be in memory. Since the n,
jobs in the think mode have the highest priority to be
swapped out (Assumption 2), these will be swapped out until
N-A jobs are swapped or until all jobs in the think mode are
swapped out. Therefore, the probability that a job needs to
be swapped in at the beginning of an interaction, Pa3s is

equal to the probability that a job in the think mode is not
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in main memory. Chen uses the approximation

P

and th

swappe

P

3.3.2.

T
5:955)

1.

(N-A)/n4 n, >N-Aand N > A
“a- 0 N A
1 n4$N"A

(4)

erefore the probability that a job does not need to be
d in at the beginning of the interaction is
a1 =1 Py
(5)
2 Derivation of P

13

o derive P two more assumptions must be made (Ref

13’

P is linearly related to the difference between
n&aber of active jobs (n,+n +n3) and the maximum
number of jobs (A) that cgn fit in memory, if that
difference is positive. The difference, n,+n +n3—A,
is the number of jobs which need memory th Zan not
have it. When this difference is positive, then some
of these jobs as well, as the jobs in the think mode,
must be swapped out. When this difference is less
than or equal to zero, Pl is zero. This models the
TOPS~10 Monitors swapping gehavior of choosing jobs in
long~-term wait gqueues, e.g. interactive jobs waiting
form terminal response or batch jobs waiting for a
tape to be mounted, over 3jobs that are in the
processing queues and more likely to run,
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2. In the worst case,the maximum number of times that a
job will be swapped out before the end of the
interaction is one., This assumption represents the
ICPT's effect of locking the job in memory

Assumption 1 tells that P13 reaches a maximum when

nl+n2+n3 reaches its maximum value N. This maximum value can

be determined using similar reasoning used in the derivation
of Equation (3). By assumption 2 the maximum number of times
a job can be swapped out is one. So the maximum probability

of being swapped out is

P / = 1/(1/P

13 = Ngwar/Nepu 14’ = P14

Therefore, from assumption 1, P13 varies linearly from 0 to
P14 as n1+n2+n3 varies from A to N. Noting that Pll' P12'
P13, and P14 must sum to 1, thus being bounded by l-Plsz14,
and combininq the above observations, we have

[ .
m1n[1-P12-P14, P14((nl+n2+n3-A)/(N-A))]

nl+n2+n3 >A and N > A
13 {

(6)

0 otherwise

and therefore

P13 = 1=P13=Py5-Py,
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to insure the probabilities sum to one.

3.3.2.3 Approximation Algorithm

The above formulation makes the probability transition
matrix of Table 3-3 dependent on Nyr i.e. the probability
transition matrix is state-dependent. Unfortunately, this
queueing network model has no exact solution known, so Chen
proposes using the following approximation algorithm (Ref

5:956)

Step 1 Assume an initial value for n,.

Step 2 Use n, to calculate P43 and P13 by Equations
(4) afld (6).

Step 3 Solve the model as a closed queueing network
with fixed probabilities using Buzen's
method.

Step 4 If the new value of n, is very close to its
previous value, tﬁ% algorithm stops.

Otherwise, Steps 2, 3, and 4 are repeated.

According to Chen, the algorithm will always converge
since the sequence of computed values of n, is either
monotonically increasing or decreasing and /s bounded
between 0 and N. Also, from Chen's computational experience,
the algorithm converges to the same point, independent of

its starting value.
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3.4 Chapter Summary

The following items are the important points brought

out in this chapter

Early models developed by Gordon and Newell, Jackson,
and Buzen where restricted to single class networks
with exponential servers. Baskett, et, al.
consolidated later models which included multi-class
networks and the method of stages to form one unified
model.

The Baskett, et. al. model provided a more accurate
model of time-sharing systems, but the model still was
not completely realistic; job swapping behavior is more
complex and should depend on the main memory size, the
number of Jjobs competing for memory, and the Jjob
sizes.

Chen developed a model to make job swapping behavior
depend on memory size, the number of jobs competing for
memory, and the jobsizes, but failed to include the
more general multi-class queueing networks. Also, his
development only considered the single CPU and single
disk system, and left the multiple CPU and multiple
disk system as an extension.

In the next chapter we will look at the structure of

the McKenzie FORTRAN program and how it was modified to

include Chen's algorithm. Combining McKenzie's program with

Chen's algorithm extended the Chen algorithm to multiple

classes.
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Chapter 4

Computer Implementation

The computational effort for the product form solution
of a qgueueing network can be quite large for anything but
very simple networks (see example in Chapter 3). Therefore,
to compute the solutions to gqueueing networks containing
many nodes and job classes, one must perform the

computations for the product form solution on a computer.

The first section in this chapter describes the
McKenzie computer program. This is followed by a section
describing the modifications maae to McKenzie's program to
implement Chen's swapping model. After the Chen
modifications are described, the next section discusses some
of the pitfalls and problems encountered in this current
effort to modify the program. The last section summarizes

the chapter.
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4,1 The McKenzie Program

In 1977 McKenzie developed a computer program to solve
multi~class closed queueing networks with service centers
having different service disciplines. This program provides
a flexible tool to model interactive computer systems, but
is limited to product form solutions of closed gqueueing
networks. The program was modified to include Chen's model
(see Chapter 3) to more accurately model job~swapping

behavior.

4.1.1 Program Capabilities

The computer program is based on the model of Baskett,
et. al. (Ref 2) and the computational algorithms of Wong
(Ref 30). Wong's computational algorithms implement a
subset of the entire Basket et. al. theory. The limitations
of the model are

- No outside arrivals can enter the network, i.e. the
model is a closed queueing network.

- Jobs cannot transition from one job class to another at
a service center,

- The third type of state-dependent service rate is not
contained in the model. (see Chapter 3 for the types
of state~-dependent service rates)
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4.1.2 Program Structure

McKenzie's computer program was written in FORTRAN 1V,
The program is modular in nature. It is divided into five
subroutines called from the main program. The names of the
subroutines and their functions are described below

INDATA Reads the data necessary to run the program.
The characteristics of the time-sharing
computer system being modeled are input in
this routine.

FUNCT Calculates the values for the functions in
the product form solution for each node in
the network. These are used to calculate the
joint and marginal probability density
functions for each node.

NORMAL Calculates the normalization constant for the
model. The normalization constant assures
that the system state probabilities sum to
one.

MARGIN Calculates the marginal probability density
functions for each node in the network.

EXPECT Calculates the probability that there are k
users of class j at a node and the total
probability over all classes of jobs that
there are k users at a node. Using these
probabilities, it then calculates node
utilizations by job class, expected gqueue
length probability distribution and their
expected values by job class, mean time spent
at each node by each job class, and system
response times by job class.

In addition to these programs written by McKenzie, five

other routines peculiar to the CDC computer at AFIT are used

WRITMS A random access routine to write records to
mass storage.
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READMS A random access routine to read records from
mass storage.

OPENMS Initializes a file for random record reads
and writes.

CLOSEMS Updates the master index in the file after
all records have been read or written.

LEQT1F A subroutine that solves simultaneous linear
equations.

The documentation on the random record routines is contained
in reference 7. LEQITF documentation is contained in

reference 13.

The WRITMS is used at the end of INDATA, FUNCT, NORMAL,
and MARGIN to save the computed values for each node on a
random access file for further processing by the next
subroutine. The READMS is used at the beginning of FUNCT,
NORMAL, MARGIN, and EXPECT to retrieve the results of the
calculations for each node from the preceding routine in the
program flow (see Figure 4-1). OPENMS and CLOSEMS are used
at the very beginning of the program and the very end of the
program. The calculations are done node by node since the
memory requirements necessary to store the entire network's
state space would exceed the CDC computers memory resources

for all except trivially small networks.

The subroutine LEQITF is used in INDATA to compute the

node departure rates using the probability transition
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matrices and node service times for each class.

|

]

: (o
)

I —_—
| i I
| 1 INDATA |
| I,
| ]

| —_
| | {
| FUNCT

|

| ]

| —_
| |
: |  NORMAL :
] |

| —_—
| |
| ] MARGIN |
| ] |
| |

| —_ b
| | ]
| |  EXPECT |
| ] |
I |

|

{

' (oo
i

|

Figure 4~1 McKenzie Program Flow Chart
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4.1.3 Program Inputs

The program inputs and formats are described in detail
in Appendix C of McKenzie's thesis and will not be discussed

here.

4.2 The CI Modificati

4.2.1 Program Structure

To implement Chen's algorithm, McKenzie's program had

to be modified to

1. Read in the system configuration data necessary to use
Chen's algorithm.

2. Compute the initial probability transition matrix for
each class of job using the input data and Chen's
formulae discussed in Chapter 3. The initial
probability transition matrix is computed using Chen's
formulae and then converted to the transition matrix
for the classical swapping model.

3. Recompute the probability transition matrix for each
class based on results from the previous iteration.
Use this new probability transition matrix to compute
the product form solution to the corresponding
queueing model.

4, Stop iterating if the solution has converged, i.e.
the absolute difference between the number of jobs in
the think mode calculated in the previous iteration
compared to the <current iteration is within a
specified tolerance, or if the maximum number of
iterations allowed has been exceeded.

Loy T
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These modifications were localized to the main program
and two subroutines in order to retain as much of McKenzie's
structure as possible. INDATA was almost completely
rewritten in order to read in the variables in Chen's
model, One major benefit in this modification is that input
to the model is now read in freefield format, i,e. data does
not have to appear in certain columns in the data file.
This will decrease the chance of human error when typing in

the input to the model.

EXPECT was slightly modified in order to stop it from
printing the results of every iteration. Now the results
are printed for the first iteration, every fifth iteration,

and then the final iteration.

The major changes to the McKenzie program to include
Chen's algorithm were incorporated in the subroutines CHEN75
and COMPUTE. At the beginning of each iteration, CHEN75 is
called, which in turn calls COMPUTE to recompute the
probability transition matrix for each class of job in the

network using the formulae from Chen's model.

Chen's model was also extended to include multiple disk
drives. Given that a job from a particular class needs a

disk I1/0, one must define the disk access probabilities for

4-7
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each disk in the system., Defining N to be the number

DISKS
of disks in the system, and PDIO(i) the probability of
performing the disk I/0 on the ith disk, then the

probability transition matrix is modified as shown below

1 0 ... DISRS 0 0
: : (NDISKS times) : : :
1 0 0 0 0
Py 0 0 Pys 0

To conform to normal probability transition matrix notation,
the subscripts are renumbered. For example, in the case of
a system with six disks, the subscripts are changed so that

P53 becomes P18' Pia becomes Pigr Pa1 becomes Pgyr etc.

The changes described ibove are illustrated in the new
flow chart for the program shown in Figure 4-2.
4.2,2 Program Inputs

The input to the new program is simpler now, since all
input data values are read in freefield, instead of

requiring the values to be in particular columns. All that
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1
[ New |
l INDATA |
| |
I R times (# of classes)
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| |~ m——— > |
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| FUNCT |
I
_
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]
U PR
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|
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| EXPECT |
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Figure 4~2 New Program Flow Chart
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is necessary is that the input data values be separated by
at least one space. The data could be entered on one line
until that line is filled up and continue in that fashion
for subsequent lines. Instead, it is recommended that the
data be entered in the following manner (the names in
capital letters are the FORTRAN variable names)

- Network description. Enter the number of nodes and
number of job classes in the network.

NODES, ITYPES
- Computer system configuration. Enter the number of

disk drives in the I/0O subsystem and the size of main
memory available for user jobs.

NDISKS, SIZEMEM

- Workload configuration. If possible, enter the
following workload configuration parameters on separate
lines

1. Disk access probabilities by class for each
disk. If possible, put the probabilities for
each disk on separate lines. There would then be
NDISKS lines.

DISKPRB(I,J) (probabiliﬁy that a member
of the j clagﬁ
accesses the i disk)

2, Job class characteristics. Put the
characteristics for each c¢lass on a separate
line. This includes the number of jobs in the
class, the CPU time per interaction (T pul’ the
number of disk I/0's per interaction (ﬁc ), and
average job size of the class. There BESuia be
ITYPES lines of job class characteristics,

4-10
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(NUSERS(J), TCPU(J), DIO(J), SIZEJOB(J))

- Node characteristics. The node characteristics include
the following

1. Node type (FCFS (NODETYP(I)=1), PS
(NODETYP(I1)=2), IS (NODETYP(I)=3), and LCFS
(NODETYP(I)=4)).

2., Types of state-dependent service rates can be
None (IDEP(I)=l), number of total jobs at node
(IDEP(I)=2), number of jobs in a particular class
at the node(IDEP(I)=3).

3. Service rate for job <class J and node I
(SERVICE(I,J)).

4, State-dependent service rates, If IDEP(1) was
not 1, then the state~dependent service rate data
must be entered. The entered values represent
the ratio of the service time when there is a
total of one job at the node (IDEP(I)=2) or when
there is one job of a particular class
(IDEP(I)=3) ., For example, to model two identical
servers, one would set IDEP(I)=2 and enter

1.0 2.0 2.0 o e 0 2.0
into array (DEP(I,1,K),K=1,MAXUSER) The number of

entries is equal to the maximum number of users
of all types in the network (MAXUSER).

4.3 P ing Notes for F Modificati

If future thesis students decide to work with the

program used in this thesis, the student should be aware of

some possible pitfalls. The problems encountered when
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making changes to the program are described in the following

paragraphs.

The original McKenzie program depended on the operating
system to initialize the variables in the model to =zero.
Unfortunately, the CDC NOS/BE operating system no longer
zeros out the memory locations before loading a program, but
instead sets them to a special value signifying an
indefinite value. In the process of modifying the program,
all uninitialized variable:z were initialized to zero for
each iteration. Some variables may have slipped by, though,
so if any "Error Mode 4-- Indefinite Value" messages appear
after modifying the program, check for uninitialized

variables,

In order to have a variably dimensioned array passed to
a FORTRAN IV subroutine, one must not only pass the variable
dimension value, but also the memory space (in the form of
an array from the main program). That is the reason the
subroutine parameter lists are so large. Unfortunately, if
one passes incorrect dimensions of a passed array to the
subroutine, no syntax error is generated. Instead, when the
program is run, it will produce one of possibly several mode
errors. Therefore, when making any changes to the

dimensions of the arrays in the main program, be sure to
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change the appropriate variables (MAXNODE, MAXTYPE, MAXUSER,
MAXSTAT, MAXUSEl, and ISIZE3) to match the true dimensions.

Finally, one must be careful that the inputs for the
model are consistent. Specifically, a common and somewhat
obscure error is to define a probability transition matrix
that unintentionally isolates a node from the network. This
causes the departure rate from that node to be zero. When
the subroutine FUNCT is called to compute the functions used
in the product form solution for that transition matrix,
that 2zero value is used as a base in an exponential
expression (line 34) which can have a zero exponent. Since
zero to the zero power is undefined, another mode error is
produced; this time "Error Mode 2--infinite operand”.
Therefore, always make sure the probability transition

matrix used in the computations is well-defined.

4.4 Chapter Summary

In this chapter, we have reviewed the basic structure
of the McKenzie program and the functions of its five
subroutines. The modifications made to this program were
identified, and the new subroutines CHEN75 and COMPUTE

discussed. The modifications were made with the objective

4-13
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of retaining as much of the original McKenzie model as
possible. All of the changes to the original program were
in the main program, INDATA, and EXPECT. The addition of
Chen's algorithm was accomplished by including CHEN75 and
COMPUTE. Finally, some programming notes on this author's
experience with modifying the program were presented.
Briefly, these included

l. If any "Error Mode 4-- Indefinite Value" messages
appear after modifying the program, check for
uninitialized variables.

2. When making any changes to the dimensions of the
arrays in the main program, be sure to change the
appropriate variables (MAXNODE, MAXTYPE, MAXUSER,
MAXSTAT, MAXUSEl, and 1ISIZE3) to match the true
dimensions,

3. Always make sure that the probability transition
matrix used in the computations is well-defined.

With this modification to McKenzie's original program,
we now have a new tool to model interactive computer systems
which considers multi-class job-swapping behavior as a
function of main memory size, the number of jobs competing
for memory, and the job size. Chapter 5 presents the
results of using the multi-class Chen swapping model and the
classical swapping model on three hypothetical workload

models.

4-14




Chapter 5

Analytical Modeling Results

This chapter contains the results of modeling the
DECsystem-10 using the single-class and multi-class Chen
swapping model on a realistic, though hypothetical
interactive/batch workload configuration. The workload was

modeled using three alternate approaches.

The first section discusses the three alternate
approaches used to model the workload configuration. The
next section describes the system configuration used to
model the DECsystem-10., The third section presents the
results of two model comparisons: Chen's swapping model
versus the classical model and the multi-class versus the

single-class Chen swapping model.

2.) Modeling Interactive/Batch Workloads

When a CPE analyst is faced with the task of analyzing

the performance of an interactive computer system containing
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batch jobs with an analytical model, he has the following
alternatives

1. Characterize the interactive and batch job classes
separately and use a multi-class queueing model.

2., Use a single class model and make one of following
commonly used approximations

- Create a single, average job class by aggregating
the characteristics of the individual classes.

- Assume the impact of batch jobs is minimal, and
use a single class with the characteristics of

the interactive jobs. This approach was used by
Chen in his original work.

5,2 DECsystem-10 System Confi tion I

Because of the large number of system configuration
parameters which can be varied within the models, an
infinite wvariety of system configurations could be
analyzed. A subset of them were arbitrarily fixed in order
to compare modeling approaches. These configuration
parameters can be divided into two types: hardware and

workload.

5.2.1 Hardware Parameters

The hardware configuration parameter values were chosen

to model as «closely as possible the Avionics 1lab
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DECsystem-10 hardware configuration. These hardware
parameters are given in Table 5-1, The hardware
configuration includes two CPU's, six disk drives within the

I/0 subsystem and one swapping device.

Table 5-1 System Configuration Parameters

Hardware Parameters

Number of Disks = 6
Number of CPU's = 2

Number of Swapping Devices = 1

| |
| |
| ]
| |
| |
| |
| |
| J
| |
| |
i l
| Workload Parameters !
| |
| Interactive Batch I
[ |
| Number of Jobs 30 10 l
| Job Size (K) 5 10 |
{ CPU quantum .0125 .015 |
| {sec) |
| Disk Access |
i Probabilities Equal Equal {
| Disk Service i
( Times (sec) .075 .075 |
| Long-term wait {
| Service (sec) 8.0 1.0 i
l Job Swap Time |
| (se?) ol 2 {
l T sec) .1 5 ]
CPU
: NDIO 4.0 . 5.0 :

Ve W LA

e
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5.2.2 Workload Parameters

The workload configuration parameter values shown in
Table 5-~1 were selected to model typical interactive and
batch jobs. These values are within the range of values

used by Chen to assure their reasonableness,

Additional knowledge of the DECsystem-10 and of
interactive and batch jobs in general were used to set the
relationships between the magnitudes of the workload
parameters. These are described below for each workload
parameter.

Job Size The above job sizes are within the range of
job sizes used by Chen. The interactive job
size was chosen smaller than the batch jobs
since this is true on the average,
Interactive jobs include many editing,
compiling, and other utility programs which
have small memory requirements. Batch jobs,
on the other hand, include the running of
large application packages such as SPSS,
SLAM, etc.

CPU Quantum This value corresponds to the jiffy described
in Chapter 2. The maximum CPU quantum is one
jiffy (.01667 seconds), disregarding overhead
of the operating system. When overhead rates
of 10-25% are included, the CPU quantums have
the values of those above. Interactive jobs
usually have more overhead, since they deal
more with system wutilities. Batch jobs
usually are large, number-crunching
applications, and utilize little overhead.

Disk Access Probabilities
Since no other information was available
these probabilities were arbitrarily chosen
to be equal for all disks and for all job
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classes to simplify the analysis.

Disk Service Times

Long~-term Wait

Job Swap Time

CPU

DIO

These times were again arbitrarily chosen to
be equal for all disks and for all job
classes. The value of the service time is
consistent with the times used by Chen.

Service Time

The value chosen £or the interactive job
class represents the "think™ time for the
user (the time to make a response to the
computer) as well as the other long-term wait
service times common to both interactive and
batch jobs, e.g. command wait or DAEMON wait
described in Chapter 2. The value selected is
consistent with the values used by Chen.

Since jobs in the batch job class do not have
a "think™ time, but do enter other long-term
wait states common to both interactive and
batch jobs, the batch job class was assigned
a long~term wait service. No information was
available to determine typical values for
long-term wait service times for batch jobs.
The batch long-term wait service time was
chosen to be significantly less than the
interactive long-term wait service time since
the long~term wait states possible for batch
jobs require considerably less time to
satisfy, and are therefore, much faster than
the "think" time of an interactive user.

The values selected are consistent with the
values used by Chen. The swap time for the
batch job class should be larger since there
is more batch job memory to swap. The batch
job swapping time was arbitrarily doubled to
take this into account.

The values selected for the CPU time per
interaction are consistent with the values
used by Chen. The CPU time per interaction
for interactive jobs is lower than the value
for batch jobs because interactive jobs are
gegerally less CPU-intensive then batch
obs.

The values selected for the number of disk

e e e i ey
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I/0's per interaction are reasonable
considering the values used by Chen. Since
the number of disk I/0's per interaction for
interactive jobs is lower than the number of
disk I/0's per interaction for batch jobs,
the natural conclusion to draw is that the
batch jobs are more I/C-intensive than the
interactive jobs (usually the opposite is
true). A more insightful approach shows that
the interactive jobs are the more
I/0-intensive. Equation 3-1 gives the formula
for the number of CPU quantums received per
interaction, N . This formula and Equation
3-3 yield a Walue of 8 and 33 1/3 for
interactive and batch Jjobs, respectively.
Now the values of N are more meaningful,
In the case of the iRteéractive jobs, half of
the CPU gquantums were terminated due to disk
I/0 requests, while in the case of the batch
jobs, only 15 percent of the CPU quantums
were terminated due to disk I/0 requests.
Therefore in this workload configuration, the
interactive jobs are the more I/O-intensive.

5.2.3 DECsystem—-10 Swapping Model

The multi-class Chen swapping model derived from the
above system configuration is shown in Figure 5-1., Note that
the probabilities and service times for the network are
class dependent (r). Node 1 corresponds to the two CPU's;
nodes 2 through 7 represent the I/0 subsystem containing the
6 disk drives; node 8 models the swapping device; and node 9

represents the long-term wait service node.

The following are definitions of the important
probabilities in the network

P P91r is the probability that the job in class

91r
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r leaving a long-term wait state (the "think”
mode for interactive 3jobs) is already in
memory and can proceed directly back to the
CPU (analogous to Pa1 in Chen's original
model) .

P is the probability that a job in class r
18361ng a long-term wait state (the "think"
mode for interactive jobs) must be swapped
into memory (analogous to Py3 in Chen's
model) .

P is the probability that a job in class r
f}ﬁfshing its CPU quantum, must be swapped
out to make room for another job which is
ready to execute, but has been waiting for
memory (analogous to P13 in Chen's model).

P,._, for j = 2,3...7, are the probabilities
opra job in class r going to the various
disks in the I/0 subsystem from the CPU
(analogous to P;, in Chen's model).

5.3 Model Comparisons

5.3.1 Definition of Performance Measures

The

following are definitions of the performance

measures considered in these comparisons (Ref 29:10-12)

CPU utilization

The percent of time the CPU is processing a
job.

Swapper utilization

The percent of time the swapping device is
swapping in or out a job.

5-8
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Response Time Elapsed time between entering the last
character of a request at a terminal and
receiving the first character of the
response,

5.3.2 Tabular Results

The results of the models are shown in Tables 5-2
through 5-4. Table 5-2 contains the performance measure
results for the classical swapping model with the three
workload cases. Table 5-3 contains the results for the Chen
swapping model with the three workload cases. Table 5-4
shows the behavior of the probability transition matrix for

different main memory

Table 5~2 Classical Swapping Model Results

| |
! Performance Measgures [
] |
| Workload CPU Swapper Response i
| Cases Utilization Utilization Time |
] (%) (%) (sec) |
{ ]
| Two Class 100.00 33.46 6.750 |
| Average 99.98 33.23 8.756 1
} No Batch 81.05 26.97 3.122 ]
I i
| Important Probability Matrix Values |
| |
: Piir  Pier  Poir :
| Two Class .466/.933 0 0 |
| Average .699 0 0 |
| No Batch .466 0 0 |
| |
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Table 5-3 Chen Swapping Model Performance Results

Memory Workload

(K)

240

200

150

100

50

40

30

20

10

Two Class
Average
No Batch

Two Class
Average
No Batch

Two Class
Average
No Batch

Two Class
Average
No Batch

T™wo Class
Average
No Batch

Two Class
Average
No Batch

Two Class
Average
No Batch

Two Class
Average
No Batch

Two Class
Average
No Batch

CPU

Utilization Utilization

(%)

98.78
70.95

98.58
70.80

97.94
70.51

95.84
70.05
30.11

89.15
69.24
29.95

87.07
68.95
29.91

85.12
68.65
29.87

84.21
68.49
29.83

82.52
68.18
29.78

Swapper
(%)

6.44
4.00

25.72
16.00

51.14
32.00

75.24
48.00
12.50

93.06
64.01
25.00

95.10
67.89
27.50

96.48
71.28
30.00

96.99
72.81
32.50

97.76
75.54
34.99

Response
Time
(sec)

.828
1.083

.847
1.107

.895
1.154

1.022
1.227
«504

1.400
1.350
557

l.521
1.407
.570

1.640
1.458
.583

1.697
1.484
.598

1.804
1.536
.613
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Table 5-4 Important

Analytical Modeling Results

Probability Matrix Values

M?ﬁ?ty Workload P11r P18r P9lr
Two Class .374/.820 0 .934
240 Average .521 0 .941
No Batch - - -
Two Class .374/.820 0 735
200 Average 521 0 .764
No Batch - - -
Two Class .374/.820 0 .468
150 Average .521 0 526
No Batch - - -
Two Class .374/.820 0 .188
100 Average .521 0 .282
No Batch <374 0 «641

T™wo Class .359/.816 .015/.003 0
50 Average .521 0 «025
No Batch «374 0 .286

Two Class .351/.814 .023/.005 0

40 Average .519 .002 0
No Batch «374 0 «214

Two Class .344/.812 .030/.007 0

30 Average 515 .006 0
No Batch <374 0 <141

Two Class .341/.811 .033/.008 0

20 Average .513 .008 0
No Batch «374 0 .068

Two Class .335/.810 .039/.009 0

10 Average .510 .011 0

No Batch 374 .000 0
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sizes and workload cases. The Chen versus classical
swapping model is discussed first to verify the Chen
swapping algorithm results. Then a comparison between the
two class model versus the single-class models is

presented.

5.3.3 Chen's Versus the Classical Swapping Model

The following paragraphs consider the impact of using
Chen's swapping model versus using the classical swapping
model. The performance measures will be utilization of the
CPU and the swapping device, and the response time received
by the interactive users. The results shown are only for
the two class model. Similar results were achieved with the

average class model and the no batch model,

5.3.3.1 Probability Structure

The primary difference between the classical swapping
model and Chen's swapping model is that Chen's probability
transition matrix is dynamic, i.,e. the probabilities in the
matrix are dependent on the main memory size, the number of

jobs competing for memory, and the job sizes.

The Figure 5-2 is a plot of the data in Table 5-4 for

the two class workload model. It illustrates the dynamic

5-12
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Analytical Modeling Results

relationship between the state-dependent probabilities and
main memory size produced by the two class workload model.

In the classical model P18 and P91r would be zero and Pllr

r
would be constant. With Chen's model, the probabilities

have some interesting properties

- behaves "classically" (P91 =0} from zero to
ag%roxlmately 70K of main memory. At that point the
Chen approximation takes effect and P steadily
increases to a probability of one at ;gdk of main
memory.

- and P behavior is reversed. For ranges of main

méﬂxSry beth®®n 70K and 250K, the probabilities behave
"classically" (p =constant, P18r’°)' Between 10K and
approximately ;6 main memory, the Chen
approximation takes effect. In this range,
inversely proportional to Pler' i.e, Pllr s gﬁlﬁ
Pl8 's loss.
r
Similar phenomena occur in the average class model and the

no batch model.

The rationale for the behavior of P91r is as follows.
For small amounts of main memory, all jobs in long-term wait
will be swapped out to make room for other jobs waiting for
memory. Hence, whenever a job gets blocked at the CPU and
goes to a long-term wait state, it will be swapped out and
must therefore always be swapped back in when it finishes
its 1long-term wait service. For large amounts of main
memory, there is enough memory to satisfy all memory demands

as well as keep all jobs in in a long-term wait state in

5-14
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memory. As main memory size approaches 250K, an increasing
number of Jjobs in a long-term wait state may stay in
memory. Therefore, this increases the probability that a
job leaving a long-term wait state will already be in main

memory and need not be swapped in.

The rationale for the behavior of Pyyr and Pygq, is as
follows. For large amounts of main memory, there is enough
for all executable jobs to remain in memory. As main memory
size gets smaller, a larger number of jobs in long-term wait
are swapped out. This continues until all jobs in the
long-term wait states swapped out. After all the inactive
jobs have been swapped out, the Job Swapper must start
swapping out jobs that are executable in order to make room
for other jobs in the system. Therefore, jobs expiring
their CPU quantum now have higher probabilities of being
swapped out, instead of returning to the end of the CPU

queue for more service (Plar becomes larger).

5.3.3.2 Performance Predictions

The figures 5-3 a) through 5-3 c) are plots of the data
contained in tables 5-2 and 5-3 for the two class model.
The horizontal 1lines on each plot represent the values

predicted by the classical model, while the data points
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represent the values predicted by the Chen model at each
memory size. Note the sensitivity of the performance
predictions due to the effects of main memory size in Chen's
swapping model. Specifically, the folleowing effects are
modeled in the Chen swapping model

- In the range from zero main memory to the main memory
size at the intersection of the Chen swapping model
curve and the classical swapping model curve
(approximately 70K for the two class model), the Chen
model includes the effect of swapping out executable
jobs on the performance measures (P,,). Compared to the
classical swapping model, the Chen éaapping model shows

* Increased response time and swapping utilization
caused by increased swapping activity.

* Decreased CPU utilization caused by less jobs in
memory competing for service from the CPU's.

- For the range of memory values between the point of
intersection and enough memory to contain all jobs
(250K for the two class model), the Chen model includes
the effect of gradually having to swap in and out fewer
jobs in long-term wait as opposed to the classical
agssumption that 3jobs in 1long-term wait are always
swapped in. Compared to the classical swapping model,
the Chen swapping model shows

* Decreased response time and swapping utilization
caused by decreased swapping of the jobs in a
long-term wait state.

* 1Increased CPU utilization caused by more jobs in
memory competing for service from the CPU's,

5.3.4 Chen's Swapping Model: Multi-class Versus Single-class

The following paragraphs compare the results of the two

class model to the average class and no batch class workload

5-19
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models when using Chen's swapping model. The performance
measures considered will be the same as those used in
comparing Chen's swapping model versus the classical
swapping model: utilization of the CPU and the swapping
device, and the response time received by the interactive

users.

The figures 5-4 a) through 5-4 ¢) are plots of the data
contained in Table 5-3 for the two class, average class, and
no batch workload models. These plots reveal the wide
disparity between the results obtained from a single class
approximation when actually two classes of jobs exist., 1In
particular, one can note the following results

- The no batch workload model seriously underestimates
the response time of interactive jobs. For the average
workload model, the response time is overestimated for
main memory sizes which allow all active jobs to reside
in memory. For main memory sizes below this value,
response times are underestimated.

- The single-class workload models underestimate the CPU
and swapper utilizations. This is especially true for
the no batch workload model. As main memory sizes
increases, the average workload model approaches the
two class model.

- Por all performance measures considered, the average

workload model was closer to the two class workload
model than the no batch workload model.
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Analytical Modeling Results

5.4 Chapter Summary

This chapter presented the results of modeling a
computer system using the Chen model extended to multi-class
models for three different workload cases: two class,
average c¢lass, and no batch. The hardware and workload
configuration parameters were chosen to as closely model the
Avionics Lab system configuration as possible and to remain

consistent with the workloads considered by Chen.

The results of the comparison between the Chen swapping
model and the classical swapping model are summarized below
- Por small amounts of main memory

* Longer response time and higher swapping
utilization caused by increased swapping
activity.

* Lower CPU utilization caused by more jobs waiting
for swapping service and 1less jobs in memory
competing for CPU srvice.

- For larger amounts of main memory

* Shorter response time and lower swapping
utilization caused by decreased swapping of the
jobs in a long-term wait state.

* Higher CPU utilization caused by less jobs waiting
for swapping service and more jobs in memory
competing for CPU service,

The following results were obtained from the

comparisons of the two class workload model versus the
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single class workload models (average class and no batch

class)

The no batch workload model seriously underestimates
the response time of interactive jobs for all memory
sizes, while the average workload model overestimates
response times for large main memory sizes and
underestimates response times fo- small main memory
sizes.

The single-class workload models underestimate the CPU
and swapper utilizations.

For all performance measures considered, the average

workload model was closer to the two class workload
model than the no batch workload model.
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Chapter 6

Conclusions and Recommendations

nclusions

From the results obtained in Chapter 5 for the workload

described, the following conclusions can be made

1.

Chen's swapping model is a more realistic model of a
computer system than the classical swapping model due
to the fact that Chen's model more accurately models
the effects of the scarcity of main memory on

job-swapping behavior.

Adding the batch class to Chen's swapping model
improves the accuracy of the performance measure
predictions when the system contains significant batch

activity.




Conclusions and Recommendations

6.2 Recommendations for Future Research

condu

1.

The following are topics of studies which could be
cted as an extension of this thesis

The current model of the DECsystem=-10 shown in Figure
5-1 is a highly abstract model that does not consider
many of the complexities of the TOPS-10 monitor or the
hardware configuration. As an extension to the model,
the following future thesis efforts could be conducted

- Modeling the CPU's in the DECsystem-10 as a
single processor-sharing node may oversimplify
the complex nature of the HPQ's, PQl, and PQ2
processor queues. Including multiple queues with
job class priorities may provide a more accurate
model of the overall system behavior. These
multiple queues and job class priorities may be
implemented using the shortest elapsed time or
shortest remaining processing time Qgqueueing
disciplines (Ref 6:178-186).

- Modeling the I/0 subsystem by just modeling the
disk drives may be overlooking long delays due to
contention for the I/0 channel, An approximation
method described in reference 16 called the
method of surrogate delays appears to be a prime
candidate for inclusion to the present computer
program to more accurately model 1I/0 channel
contention.

- An important extension to the present model would
be to determine how the numerous scheduling
parameters within the DECsystem-10 affect the
workload configuration parameters, service times,
and the probability transition matrices in the
model. This information would provide guidance
to systems analysts in setting optimum values for
the scheduling parameters.

Although the current model does provide reasonable
results, the model has not been validated. To
accomplish this validation, one of the following two
approaches could be taken
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- Take measurements on the actual system, and
compare the measurement results to the results
predicted by the model.

- If measurements on the actual system are
impossible, the development of an
detailed simulation model which takes into
account most of the intricacies of the TOPS-10
monitor would be a step toward validation. This
would not completely validate the analytical
model since the simulation itself is not
validated, but the modeling accuracy possible
with a simulation should provide a more accurate,
but time consuming model.

The impact of changes in the workload configuration
using the current model would provide better insights
as to how the performance measurements are affected by
the workload configuration. Some of the nmost
interesting variations might be changes in the

- Job Size
= Number of batch jobs in the system

- Number of competing jobs in the system, i.e. not
in a long-term wait state

- Number of CPU versus I/0 intensive jobs.

Another type of workload variation entails increasing
the number of job classes in the system. To model a
large number of job classes (greater than 4) in the
system will require a restructuring of the current
program. The program currently computes the necessary
probability distributions one node at a time, since
the state space for the whole network would be too
large to run on the CDC computer. With a larger
number of job classes, the state space of a node
becomes unmanageable, Therefore, the computations
will have to be broken down even further, in order to
fit in memory. If the program rewrite is undertaken,
one of the two alternatives listed below should be
chosen

- Rewrite the program in FORTRAN77 to take
advantage of the language's increased structure
and more importantly, to incorporate the random
record reads and writes that are now part of the
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language. This will eliminate the installation
dependent implementation of random record
processing and make the program more portable.

Rewrite the program in PASCAL, PL/I or some other
language that allows recursion. Since the
computational algorithms are defined recursively,
this may provide more efficient code and will
definitely be a more straight forward
implementation.
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Appendix A

MULTI-CLASS CHEN MODEL PROGRAM LISTING
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PROGRAM PERFORMC INPUT, QUTPUT, TAPES=INPUT > TAPEb=QUTPUT, TAPEI)

THE PROGRAM PERFORM [S A CLOSED QUEUEING NETWORK
MODEL WHICH CAM BE USED IN PERFORMANCE EVALUATION OF
TIME-SHARING CIMPUTER SYSTEMS. THE PROGRAM PERFORM IS
BASED ON A CLOSED QUEUEING NETWORK MODEL DEVELOPED BY
F. BASKETT,K. CHANDY. R. MINTZ, AND F. PALACICS,

THEIR MODEL NAS PRESENTED IN THE ARTICLE “OPEN. CLOSED,
AND MINED NETWORK 0F QUEUES WITH DIFFERENT CLASSES OF
CUSTOMERS®, WHICH APPEARED IN THE JOURNAL OF THE ACM,
WL. 22, N0, 2. PP. 248-260, APRIL. 1975.

THE COMPUTATIONAL ALGORITHNS WHICH ARE USED TO
IMPLEMENT THE MIEL OF BASKETT, ET. AL. ARE BASED ON THE
COMPUTATIONALLY EFFICIENT ALGORITHMS PRESENTED IN THE
DISSERATION OF J. NONG ENTITLED QUEUEING NETWORK MODELS
FOR COMPUTER SYSTEMS, UCLA-ENG-7579, UNIVERSITY OF
CALIFORNIA AT LOS ANGELES, OCTOBER, 1975.

DIMENSION E(13,2), EXPVAL(13,2), DEPART(13,2). FNT(1000),

1IFACTOR(41), INDEX3(40), ISKIP(2), ISTATEL(2)s ISTATE2(2),

200ETYP(13), NORNOIN(1000,2), MUSERS(2). PROBI13,13),

FPROBCUM(1000), PROBMAR(1000), PROBPAR(13,2,41),

APROBTOT(13,411, SERVICE(13,2). UTIL(13.2), WAREA(13):

S1(13), MEP(13), DEP{13,2,40), TCPU(2), DIO(2),

SDISKPRB(13,2),S1IEJ0B(2)

DOUELE PRECISION IFRCTOR

LOGICAL PRINTON

INTEGER TVSERS, NAVGJOB

REAL DELTA. TOLERAN, PEXPVAL. SIZEMEM, AVGJORS

WAXMDEE = 13

MAXUSER = &)

MAXUSE] = MAXUSER + 1

MXTYPE = 2

MAXSTAT = 1000

ISIZE3 = &0

MAXNODE -— THE MAXIMM NUMEER OF NODES WHICH CAN DE
REPRESENTED IN THE PROERAM.

MAXUSER — THE MAXIMUN NUMBER OF TOTAL USERS THAT CAN
BE REFRESENTED IN THE PROGRAM.

MAXUSERT —- THE MAXIMUM NUMBER OF TOTAL USERS THAT CAN
BE REPRESENTED [N THE PROGRAM + §.

MAXTYPE —- THE MAXTHUM NLMBER OF TYPES OF USERS THAT
AN BE REPRESENTED IN THE PROGRAM.

MAXSTAT —— THE MAKIMAM STATE SPACE FOR EACH NODE.
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PERFORN
PERFORN

PERFORM
PERFORM
PERFORN
PERFORM
PERFORN
PERFORN 10
PERFORM 11
PERFORN 12
PERFORN 13
PERFORN {4
PERFORM 15
PERFORM 15
PERFORM 17
PERFORM 18
PERFORN 19
coxMop
tomop 2
coMmMoD 3
coxmod 4
coxmod S

6

7

8

9

WO NO W

COXNOD
COXMoDd
CoXMOD
CoTM0D
CoxMop 10
coxmon 11
COXMaD 12
coxMan 13
CoXM0D 14
COXMoD 15
toxmos 16
coxmin 17

PERFORM 33 .

PERFORM 34
PERFORM 35
PERFORM 36
PERFORM 37
PERFORM 38

PERFORM 40
PERFORN 84
PERFORN 42
PERFORN &3
PERFORN 44
PERFORM 45
PERFORR 45
PERFORN 47
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ISIZE3 — THE MAXIMUNM NUMBER OF RANDOM RECORDS (30)
WHICH CAN BE WRITTEN ON TAPE3 ¢ 1. [SIZE3 [S
CALCULATED BY MAXNODE # 3 + 1.

E(I,J) -— THE HEAN ARRIVAL RATE OF TYPE J USERS AT
SERVICE CENTER 1. THE DIMENSIONS OF E ARE
(MAXNODE, MRXTYFE).

EXPWLIL,J) —~ THE EXPECTED NUNBER OF TYPE J USERS
AT NODE I AT EQUILIBRIUM. THE DIMENSIONS
OF EXPVAL ARE (MAXNODE, MAKTYPE).

DEPART{1,.)) —- THE DEPARTURE RATE OF TYPE J USERS FROM
NODE [ AT EQUILIBRIIM. THE DIMENSIONS
OF DEPART ARE (MAINODE, MAXTYPE).

FNT(I) —— THE FUNCTICW REPRESENTING THE RELATIVE
WEIGHTING OF STATE I IN THE CALCULATIONS OF
THE EQUILIBRIUM STRTE PROBABILITY DISTRIBUTIONS.
THE DIMENSION OF FNT IS (MAXSTAT).

TFACTOR(I) — VALUE OF I FATORIAL. DIMENSION OF
IFRCTOR IS (MAXUSER1).

INDEX3(I) -— THE LOCATION OF RECORD I ON THE RANDOM

FILE TAPE3. THE DIMENSION OF INDEX3 IS
{ISIZED).

ISKIP — WORKING ARRAY USED TO SKIP OVER UNNEEDED
STATES IN THE STATE SPACE FOR A GIVEN NOLE,
THE DIMENSION OF ISKIP IS (MAXTYPE).

ISTATEL -— WORKING ARRAY USED TO SPECIFY A STATE OF A

GIVEN NODE. THE DIMENSION OF ISTATEL IS (MAXTYPE).

ISTATE2Z — WORKING ARARY USED TD SPECIFY A STATE OF A
GIVEN NODE. THE DIMENSION OF ISTATE2 IS
{NAXTYPE),

NODETYP([} — SPECIFIES THE TYPE OF NODE 1. THE
DIMENSION OF NODETYP IS (MWAXNODE).

NORYCON — WORKING ARRAY USED TO CALCULATE THE NORMAL-
IZATION CONSTANT. THE DINENSIONS OF NORMCON
ARE (MAXSTAT,2).

NUSERS(L) —— NUMBER OF TYPE I USERS REPRESENTED IN THE
MODEL. THE DIMENSION OF NUSERS [S (MAXTYPE),

PROB(1,J) —- THE PROBABILITY THAT A TASK OF A GIVEN TYPE
WILL PROCEED TO NODE I WHEN IT DEPARTS
NOIE J. THE DIMENSIONS OF PROB ARE
{MAXNIDE , MAKNODE ) .

A-3
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PROBOUM{1) ~—- THE PROBABILITY THAT A SUBNETWORK OF
NOCES IN THE NETWORK NODEL IS IN A GIVEN
STATE. THE STATES IN THE STATE SPACE ARE
INDEXED BY THE SUBSCRIPT I. THE DIMENSION
OF PROBCUM IS (MAKSTRT).

PROBHAR(I) —- THE PROBABILITY THAT A SINGLE NODE IN
THE NETWORK MODEL IS IN A GIVEN STATE.
THE STATES IN THE STRTE SPRCE ARE INDEXED
BY THE SUBSRIPT I. THE DIMENSION OF
PROBYAR 15 (MAXSTAT).

PROEPAR(T, J,K) --- THE PROBABILITY THAT THERE ARE K
USERS OF TYPE J AT NODE. THE
DIMENSIONS OF PROBPAR ARE (MAXNODE,
MAXTYPE, MAXUSEL ).

PROBTOT(1.J) -— THE PROBABILITY THAT THERE ARE J USERS
AT NODE [. THE DIMENSIONS OF PROBTOT
ARE (MAXNODE,MAXTYPE).

ERVICE(I,J) — THE SERVICE TIME OF A TYPE J USER AT
NIDE . THE DIVENSIONS OF SERVICE
ARE (MAXNODE, MAKTYPE).

UTIL(T.J) — THE UTILIZATION OF NODE I BY USERS OF TYPE
J. THE DIMENSIONS OF UTIL ARE (MAXNODE:
HAKTYPE},

WAREA -~ WORKING ARRRY USED TO CALCULATE THE MEAN ARRIVAL
RATE OF USERS AT THE NCDES IN THE NETWORK.
THE DIMENSION OF WAREA IS (MAXNODE).

K —- NORKING ARRAY USED TO CALCULATE THE MEAN ARRIVAL
RATE OF USERS AT THE NGDES IN THE NETWORK.
DIMENSION OF X IS (MAXNODE).

IDEP(I) ~—- INDICATES STATE DEPENDENT SERVICE
RATES AT NODE 1.

1 —— NO STATE DEPENDENT SERVICE RATES

2 == SERVICE RATES DEPENDENT ON THE TOTAL
NUMBER OF USERS AT THE NODE.

3 -— SERVICE RATES DEPENDENT ON THE NUMBER
OF USERS OF A TYPE AT THE NODE.

THE DIMENSION OF IDEP IS (MAXNODE).

DEP{I,JsK) -— THE RELATIVE SERVICE RATE OF TYPE J USERS
AT NODE [ WHEN THERE ARE K USERS PRESENT
AT NODE I. THE DIMENSIONS OF DEP ARE
(MAXNIDE, MAXTYPE, MAXUSER) .

WRITE(S.1)

FORMATCIH1, 9%, *THIS 1S A CLOSED GUEUEING NETWORK MODEL °»

1" FOR TIME-SHARING COMPUTER SYSTEMS. ")
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PERFORMLO1
coxnop 18
COXNOD 19
COXMOD 20
coxmop 21
CoxoD 22
PERFORN108
PERFORM109
PERFORML10
PERFORNM111
PERFORM112
PERFORML13
PERFORM1 L4
PERFORM1LS
PERFORML 16
PERFORM117
PERFORNML18
PERFORM119
PERFORNM120
PERFORN121
PERFORN122
PERFORN1 23
PERFORN1 24
PERFORMI25
PERFORML26
PERFORM127
PERFORN128
PERFORM129
PERFORM130
PERFORML31
PERFORM132
PERFORM133
PERFORN134
PERFORM135
PERFORM136
PERFORM137
PERFORML33
PERFORM1 39
PERFORN140
PERFORMLA1
PERFORM142
PERFORM143
PERFORM144
PERFORN145
PERFORM1456
PERFORM147
PERFORM148
PERFORN149
PERFORNLS0
PERFORMISH
PERFORN1S2
PERFORML 53
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OPEN THE MASS STORAGE FILE
CALL OPENMS(S, INDEX3, 1S1ZES,0)

CALL INPUT TO INPUT THE DATA NECESSARY TD EXECUTE THE
PROGRAM

CALL INDATA(PRIB, SERVICE. E,NQDETYP,NUSERS, HAXNODE.
1MAYUSER, MAXTYPE, MAXSTAT, HODES, TUSERS, ITYPES, X, INDEX3. 1SIZE3.
Z4AREA, ISTRTES, TDEP. DEP, EXPVAL,NDISKS, WAXITER, TOLERAN,
3DISKPRB, TCPU, D0, STIEJOB, AVNGIOBS, NAVGJIOB) « RETURNS(10)

PRINTON = ,TRUE,

PEXPWAL = 0.0

NMITER = 0

D0 4 J=1,ITVFES

00 4 [=1,NODES

FUE HN@DTO2

EXPVAL(1,J) = TUSERS/NOBES

0704

BIPVAL(1,d) = 0.0

CONTINUE

CALL CHEN7S TO COMPUTE PROBABILITY TRANSITION MATRIX PROB

CALL CHENPS(PROB, MDISKS, DISKPRB, TCPU, D10, NAVG.J0B,
1EXPVAL , SERVICE, [ELTA, FEXPYAL , TUSERS, MAXNODE, MAXTYPE,
2{TYPES, NODES, NITER. E+ X, NARER)

CALL FUNCT TO CALOULATE THE FUNCTIONS FNT FOR ALL NODES.

CALL FUNCT(E, SERVICE, IFACTOR, [STATEL, FNT. NUSERS. NODET(?,
NDDES, TUSERS. | FYPES, FAXNODE, MAXUSER, MAXUSEL . MAXTYPE,
2MAXSTAT, INDEX3, ISTZE3, ISTATES, IDEP, DEP), RETURNS(10)

[ALL NORMAL TO CALCULATE THE NORMALIZATION CONSTANT.

CALL NORMAL (PNT, NORION, NUSERS, ISTATE! , ISTATE2, ISKIP,
INAXNODE , MAXSTAT , NDDES s ITYPES, MAXTYPE, INIEX3, {STIE3, ISTATES)

CALL MWARGIN TD CALCILATE THE MARGINAL PROBABILITY
DISTRIBUTINN FOR THE STATE OF THE NOOES.

CALL NARGIN(FNT,NORMCON, PROBMAR, PROBCUM, NUSERS., ISTATE1, ISTATE2,
1 1SKIP, MAXNODE: MRYSTAT, NAXTYPE, NODES., 1 TYPES, INDEX3, [SIIE3, ISTATES)

CALL EXPECT TO CALCULATE VARIOUS PERFORMNCE MEASLRES,

CALL EXPELT(PRIBMAR,PROBTOT, PROBPAR, NUSERS, [STATEL,
NODETYP, EXPVAL , DEPART, UT L., SERVICE, E, MAXNODE ,
2MAKUSE1 » WAKTYPE, NODES: [TYPES, IUSERS . MANSTAT, INDEX3, ISIZE3, 1STATES,
JEDEP, DEP, MAKUSER, PRINTIN, NI TER)

DO 7 L =1, NODES

PERFORM1SS
PERFORM1S6
PERFORM1S7
PERFORM1SB
PERFORM139
PERFORN160
PERFORM161
PERFORNL62
PERFORNMLAI

COXMGD
C0¥MoD
CaxMop
COXNOD
Coxmod
COoxMoD
C0XM0D
CoxMod
COXMOD
CoXNDD
COXNOD
COKMO0
COANOD
Coxmol
CcoXMoD
LOXMOD
CoXnoo
CoXNOB
COXMOD
CONMOD

23
24
Ys}
26
27

ELBLLKREBB28I

4
42

PERFORM167
PERFORN168
PERFORM1SY
PERFORML70
PERFORNL7Y
PERFORNIT2
PERFORM173
PERFORM17A
PERFORNITS
PERFORML76
PERFORNL77
PERFORN178
PERFORMI79
PERFORNLS0
PERFORN1SL
PERFORN132
PERFORMLE3
PERFORM184
PERFORM135
PERFORM186
PERFORM1S7
PERFRM153

CoXneD
CoXMod

LX]
“"
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DO -

007N =2 ITYPES

EXPVAL{L,1) = EXPVAL(L, 1) + EXPVAL(L, M)

CONTINE

[ELTA = ANS(PEXPVAL-EXPVALINDISKS+3,1))

PEXPUAL = EXPVALINDISKS+3.:1)

NITER = NITER ¢

PRINTON = .FALSE.

WRITE(S, 1210} DELTR

FORMAT(////10%,"DELTA = "\F10,5)

IF ((NITER .LT. WAXITER) .AND. {DELTA .GT. TOLERAN)} GO TD S
PRINTON = . TRLE.

CALL EXPECT{PROBHAR, PROBTOT, PROBPAR, NUSERS, ISTATEL,
1NODETYP, EXPVAL DEPART, UTIL., SERVICE, E, MAXNGDE s

2MAXUSEL, NAXTYPE, NJDES3, [TYPES, IUSERS, MAKSTAT, INDEX3, ISI1E3, ISTATES,

3LDEP, DEP: NAXUSER , FRINTON, NITER)

G0 T0 20

WRITE!6:15)

FORMAT{//1.0X, "ERRORS HAVE OCCURRED IN THE INPUT DESCRIPTION.*,
1//2X,"CHEDX YOUR INPUT DATA FOR CORRECTNESS.®)

CONTINE

CLOSE THE MSS STORAGE FILE.

CALL CLOSMS(3)

SToP

121

SUBROUTINE INDATA(PROB, SERVICE E, NODETYP, NUSERS, NAKNODE »
1MAXUSER, MAXTYPE, MAXSTRT, NODES, [USERS, [TYPES, X, INDEXS, ISIZE3,
2WAREA, ISTATES, I DEP, DEP, EXPYAL , NDISKS: MAXTTER, TOLERAN,
3DISKPRE, TCPY, D10, STZEJOB, AVGIOBS- NAVGJOB ) » RETURNS (ERROR)
DIMENSION PRIB(MAXNODE, MAXNODE), SERVTCE(MAXNODE,MAXTYPE),
1E(MAXNODE, MAXTYPE), NODETYP{MAXNODE), NUSERS(MAXTYPE),
2X(MAXNODE}, WAREA(MAXNDDE). INDEN3(ISIZE3)> IDEP(MAXNODE).
3DEP (RAXNODE » MAKTYPE, NAXUSER) , EXPYAL { MAXNODE , MAXTYPE ) »
ADISKPRE (NAXNODE, MAXTYPE ) » TCPUINAKTYPE) , DIOCMAXTYPE) «
SSIZEJOB(MAXTYPE]

SUBROUTINE INPUT READS THE DATA NECESSARY TO RUN THE
PROGRAM. THE CHARACTERISTICS OF THE TIME-SHARING COMPUTER
SYSTEM BEING MODELED ARE INPUT IN THIS ROUTINE.

WRITE(b,1)
FORMAT(////10%, *se2#THE INPUT TO THE MODEL FOLLOMWS2#mA2")

READ THE NMUMBER OF NODES IN THE NETWORK AND THE NUMBER
OF TYPES OF TASKS.

READ(S,*) NODES. ITYPES

IF { BOF(S) ) 1000415

CONTINE

IF ( (MIDES.GT. MAINODE) .OR. (ITYPES .GT. MAXTYPE) ) GO TO 1100
WRITE{6,20)> NODES, ITYPES

FORMAT(//10X,“THE NUMBER OF NOTES REPRESENTED IN THE MODEL = *,
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L113/710%, “THE NUNBER OF TRSK TYPES REPRESENTED IN THE °,
2"MOIEL = *,13)

READ(S, #) NDISKS, SIZEMEN, MAXITER, TOLERAN

WRITE(b:25) NDISKS, SIZEMEM

FORMAT(//10X, "THE NUMBER OF DISKS REPRESENTED IN THE MODEL = *,
113//10K,*THE SLIE OF MEMORY IN K BYTES = ",F10.5)

IF ( EOF(S) .EQ. 1) GO TO 10

WRITE(6, 27} MAKITER, TOLERAN

FORMAT(//10X, "THE MAXIMM MRGBER OF ITERRTIONS = °,13//10%,
1°THE TOLERANCE FOR COMErSION = ,F10.9)

IF ( EOF(S) .EQ. 1} &)1 TO 1000

0029 1=1, NDISKS

READ(S-#) (DISKPRB(I,J).J=1,ITYPES)

IF (BOF{S) .EQ. 1) GO TO 1000

CONTINE

WRITE(6,30)

FORMAT{ /710X, "DISK #*, 15X, *DISK ACCESS PROBABILITIES *
1"BY TASK TYPE")

00321 =1, NDIXKS

WRITE(6,31) 1. (DISKPRB(1.J),Jd=1,ITYPES)

FORMAT( /10X, 14, 10X, 10(F10.5))

CONTIME

READ(S»#) (NUSERS(J), TCPU(J).D10(J),>SIZEJ(B(J), J=1, ITYPES)

[USERS = 0

[STATES = 1

WRITE(4,35)

FORMAT(///710X, "THE DISTRIBUTION OF TASKS IN THE SYSTEM ",
1*BY TASK TYPE "JJ17X,°TRSK TYPE",SX, "NUMBER OF TASKS®,8X,
2'CPU TIME/INTERACTION®,BX, “DISK 10/S/INTERACTION",8Y,
3"J0B SIZE 1N K BYTES®/)

D04 T =1, ITPES

WRITE(6,40) 1, MUSERS(I), TCRUCI). DIOCI), SIZEJOBCD)

FORMAT ( /20X, 13, 20%,13,13X,F10.5, 2(20X,F10.5) )

TUSERS = IUEERS + NUSERSII)

ISTATES = ISTATES # (NJSERS(I) + 1)

CONTINUE

WRITE(H,42) IUSERS

FORMAT{ /717X, "TOTAL"» 21X, 13)

AVGJOBS = 0.0

00431 =1, ITYPES

AVGJOBS = ANGJOBE + SIZEJDB(I) # NUSERS(I)

CONTINE

AVGJOBS = AVGJOBS / LUSERS

NAVGJOB = SIZEMEM / ANGIOBS

WRITE(5,48) RVGJOBS . NAVGJOB

FORMAT (/710X " ERAGE JOB SIZE = *,F10.5,/10X,
1“AVERAGE MUMBER OF JOBS IN MEMORY = *,[3)

TF( (IUSERS .GT. MAXUSER) .OR. (ISTATES .GT. MAXSTAT)) GO TO 1200

READ THE NODE CHARACTERISTICS,

WRITE(6,48) ITYPES
FORMAT(//1/10X, "NODE (HARACTERTSTICS"//10X, "NODE®,3X, "NODE" 5K+
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1000
1005

1100
1105

1200
1205

OO0

10

as

1"SERVICE® /10X, "NAME", 5X, "TYPE®, 7X, "RATE". 6X, "NODE SERVICE RATES *,

2°FOR TASK TYPES 1 THROUGH".13)

[N 65 I =1, NODES

READ(S, ) NODETYP(I), IDEP{I1), (SERVICE(I,J),J=1,I[TYPES)

IF( BOF(S) ) 1000,55

CONTINE

IF (IDEPID) .BQ. 2) READ{S,*) (DEP(1,1,J),J=1,MAXUSER}

IF ( IDEP{I) .NE. 3) GO TD 59

D058 J=1, ITVPES

READ/S,#) (DEP{I.J,K),K=1,HAXUSER)

CONTINUE

CONTINUE

WRITE(4, 60} 1, NOUETYP(I), IDEP{I), (SERVICE(I,J),d=1,ITYPES)
FORMAT ( /10X, 14,5K, 4, 8X, 14, 6X,8F10.5.10( /41X, ££10.5))
CONTINUE

RETURN

WRITE(4, 1005}

FORMAT(//10X, " ++#UNEXPECTED END OF INPUT###")

RETURN ERROR

WRITE(5,1105) NAXNO(E, MAXTYPE, NODES, ITYPES

FORMAT(//10%, "HAXIMMM NODES = “,[3/."MAKIMUM TASK TYPES = *,13//,
1'"YOUR INPUTS ARE *.13," AND ",13," RESPECTIVELY.")

RETURN ERR(R

WRITE(b,1205) MAXUSER, MAXSTAT, IUSERS. ISTATES

FORMAT( /710X, "MAXIMM NUMBER OF TASKS = *,13,//10X,

1*MAXIMM NUMBER OF STATES = “,I9,//10%,

2"YOLR INPUTS ARE *,13," AND ",15," RESPECTIVELY.™)

RETURN ERROR

END

SIBROUTINE FUNCT(E, SERVICE, IFACTOR, ISTATE, FNT, NUSERS, NODETYP,
{NGDES, [/SERS, ITYPES, MAXNODE, MAXUSER, MAKUSE,

2MNTYPE, MAXSTAT, INDEX3, ISI2E3, ISTATES, IDEP, DEP) » RETURNS (ERROR)
DIMENSION E(MAXNODE,MAXTYPE), SERVICE(MAXNGDE,MAXTYPE),
1IFACTOR(MAXUSE]L), ISTATE(MAXTYPE), FNT(MAXSTAT).
NUSERS(HAXTYPE), NODETYP{MAXNODE), INDEX3(ISIZE3),
STTEP(MAINOLE) , DEP{MAXNOLE, NAXTYPE , MAXUSER)

DOUBLE PRECISION IFACTOR

THIS SUBROUTINE CALCULATES THE VALUES FOR THE FUNCTIONS
WHICH ARE USED TO CALCWLATE THE PROBABILITY THAT THE COMPUTER
SYSTEM BEGIN MODELED IS IN A GIVEN STATE AT EQUILIBRIUM.

IFACTOR(1) = |

D0 10 I = 1, MAIUSER
[FACTOR(I+1) = IFACTOR(I) # [
CONTINLE

DO 60 I = 1. NODES
INDEX = 1

D0 20 J = 1, ITYPES
ISTATE(J) = 0
CONTINUE

CONTINE

NIBRR = |
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00 30 J =1, ITYPES

NMBER = NUMBER + ISTATE(J)

CONTINUE

J=2

CONTIME

FVALLEL = |,

FUALLE? = §,

D038 K =1, ITYPES

L =ISTATE(K)

FYALUE] = FVALUE] # ((E(1.K) # SERVITE(I,K))as)
FYALUE2 = FUALUE? # IFACTOR(L#1)
CONTINUE

IF ¢ NODETYP(I} .EQ. 3 )} FVALLE2 = |, / PVALE2
IF ( NJDETVYP(1) .NE. 3 ) FVALUE2 = IFACTIRINUMBER) / FVALUE2
FNT(INDEX) = FVALIJEL # FVALLE2

IF ( IIEM(I) .NE. 2 ) 6O T 41

MM = MMBER -

IF ( NN .EQ, 0 GO TO 41

FFF = 1,

DAWK=1, NN

FFF = FFF & DEP(1,1.K)

CONTINUE

FNT{INDEX) = FNTIINDEX) / FFF

CONTINUE

IF ( HIEPUI) ME. 3)> B0 TO 44

FFF =1,

Do 43K = 1, [TYPES

IF ( ISTATE(K) .EQ. 0 ) &0 TO 43

NN = ISTATE(K)

DO 42 KK = 1, Wi

FFF = FFF * OEP(1,K\KK)

(ONTINE

CONTINGE

FNTCINDEX) = FNTUEINDEX) / FFF

CONTINGE

INDEX = INIEX + |

MIMEER = MUMEER + 1

ISTATE(§) = ISTATE(L) + 1

IF ¢ ISTATE(1) ,LE. NUSERS(1) ) B0 TD 39
CONTINUE

ISTATE()) = ISTATE(J) + 1

IF ( ISTATE(D) .GT. NUSERS(J) ) 6O TO0 58
K=J-~-1

DO SOL =1,K

ISTATE(L) = O

CONTINGE

G0 T0 25

CONTINUE

JaJd+

IF ( J ,LE. ITYPES ) GO TO 45

THE FUNCTIONAL VALLES CALCILATED FOR ALL POSSIELE STATES
OF EACH NOCE ARE SAVED SD THAT THEY CAN BE USED TO CALOULATE

A-9
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THE NORMALIZATION CONSTANT.

CALL WRITHS(3,FNT(1), ISTATES, [)
CONTINUE

HETURN

B

SUBROUTINE NORMAL (FNT, NORMCON, NUSERS. ISTATEL,
1LSTATEZ, 1SKIP, BAXNODE : MAXSTAT, NODES, ITYPES,
2%XTYPE, INDEX3, ISIZE3, ISTATES)

DIMENSION PNT(MAXSTAT), WORMCON(MAXSTAT.2),
INUSERS(MAXTYPE), ISTATEL(MAXTYFE), ISTATE2(MAXTYFE),
2ISKIP{MAXTYPE) , INDEX3( ISIZE3)

[NTEGER FINDEX

REAL NORMCON

THIS SUBROUTINE CALCULATES THE NORMALIZATION CONSTANT
FOR THE MODEL. THE NORMALIZATION CONSTANT ASSURES THAT THE
PROBABILITY OF THE SYSTEM BEING IN ALL STATES SUMS TO UNITY.

CALL REAENS(3,NORMCON(1.1), ISTATES, 1)

CALL WRITNS(3,NORMCONC1,1). ISTATES, MAXNODE+1)
NORME = 1

NORMZ = 2

DO 110 I = 2, NODES

CALL READMS(3,FNT(1), ISTATES,I)

INDEX = 1

D0 15 J = ), ITYPES

ISTATEL()} = 0

CONTINE

CONTINE

K=2

00 25 J = 1, ITYPES

ISTATE2(J) = D

CONTINE

K =1

FINDEX = |

LINDEX = IMDEX

ITe = 1

DO 30 J =1, ITYPES

ISKIP(J) = LTEMP & (NJSERS(J) - ISTATEL(J))
[TEIP = ITEP # (NUSERS(J) + 1)

CONTINUE

ISKIP(1) = ISKIP(1) + 1

FVALUE = 0.

DONTINE

FWALUE = FVALUE + NORMCON(FINDEX,NORML) + FNT(LINDEX)
IF ( FINDEX .BQ. INDEX ) GO 10 70
ISTATE2(KK) = ISTATE2(KK) + 1

IF ( ISTATE2(KK) .6T. ISTATEIKK) ) GO TO 50
FINDEX = FINDEX + 1

LINDEX = LINDEX - 1

60 70 &
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100

110

OO

CONTINUE

FINDEX = FINDEX + ISKIP(KK)

LINDEX = LINDEX - ISKIP(KK)

KK = KK +1

ISTATE2(KK) = ISTATE2(KK) + 1

IF ( ISTATE2(KK) .6T. ISTATEL1(KKX) ) GO TO S0
L=k -1

0sdJ=1 L

ISTATE2(J) = 0

CONTINE

K=1

G0 TO 40

CONTINUE

NORMCON( INDEX, NORM2) = FVALUE

[NDEX = INDEX + {

ISTATEL(1) = ISTATEL(1) + |

IF ( ISTATEN(1) .LE. WUSERS(1) ) GO TD 20
CONTINUE

ISTATEL LK) = ISTATEL(K) + 1

IF ( ISTATEL(K) .GV. NUSERS(K) ) GO TO 100
L=K-1

0090 J= 1y L

ISTATEL(J) = 0

CONTINUE

G0 T0 20

CONTIME

K=K+1

IF ( K ,LE. ITYPES ) GO 7D 80

CALL WRITHS(3,NORMCON(1,NORN2)» ISTATES, MAXNGDE+D)
[TEMP = NORML

NORM! = NORM2

NORMZ = ITEWP

CONTINE

RETURN

80

SUBROUTINE MARGIN(FNT,CONNORM, PROBNAR, PROBCUM,
{NUSERS, ISTATEL, ISTATER, ISKIP, WAXNODE , MAXSTAT,
ZHAXTYPE, NODES, ITYPES, INDEX3, 1SIZE3, ISTATES)
DIMENSION FNT(MAXSTAT), CONNDRM(MAXSTAT.2).
1PROBWAR(MAXSTAT), PROBCUMIMAXSTAT),

WSERS(NAXTYFE), ISTATEL(MAKTYPE), ISTATE2(MAXTYPE),

SISKIP{MAXTYPE), INDEX3(ISIZE3)
INTEGER FINDEX

THIS SUBROUTINE CALCULATES THE PROBABILITY THAT A GIVEN
NODE S IN A GIVEN STATE. THIS PROBABILITY IS CALCULATED

FOR ALL POSSIBLE STATES FOR EACH NODE.

NORM] = {
NORR2 = 2

CALL READNMS(3, CONNORM{ 1, NORN1 } + ISTATES, NAXNGOE +NODES )

CONSTAN = £, / CONNORM(ISTATES. NORM1)
FINGEX = |

A-1}
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LINDEX = ISTATES
FPP = (.

CALL READNMS(3,FNT (1), ISTATES, NOUES)
CALL READHS(3, CONNDRM( 1, NORM2) , ISTATES, MAXNGDE +NODES-1)
CONTINUE
FROBMARIFINDEX) = CONSTAN » CONNORM(LINDEX.NORM2) #
1PNT(FINDEX)

PROBCUM(FINDEX) = CONSTAN » CONNORM(F INDEX,NORM2) #
1FNT(LINDEX)

PPP = PPP + PROBIAR(FINDEX)

FINDEX = FINDEX + 1

LINDEX = LINDEX - 1

IF ( FINDEX .LE. ISTATES ) 60 T0 20

[F ( NODES .LE. 2 ) 60 TO 150
NCYCLES = NODES - 2
CALL WRLITMS(3,PROBMAR( 1)+ ISTATES, MAXMODE £2+NODES)
DO 130 1 = {, NCYCLES
NSUB = NODES - I
CALL READNS(3,FNT{1),1STATES,NSUB)

ITENP = NORML
NORM1 = NORM2
NORMZ = ITEPP

CALL READNS(3, CONNORM( 1,NORM2) » ISTATES, MAXNCDE+NSUB-1)

INDEX = |

B0 30 J = 1, ITYPES

ISTATEL(J) = 0

EONTIME

K=2

PPP = 0.

CONTINE

D0 S0 J =1, ITYPES

ISTATE2{J) = ISTATELL))

CONTIME

FINDEX = 1

LINDEX = INDEX

K=1

e =1

D0 60 J = 1, ITYPES

ISKIP(J) = ITENP # ISTATEL(J)

ITBP = ITOP # (NUSERS(J) + 1)

CONTINGE

ISKIP{1) = ISKIP(1) + 1

FVWALIEL = Q.

FVALUE2 = 0,

CONTINE

FUALUE] = FUALUEY + PROBCUM{LINDEX) #
1((CONNORM(F TNDEX, NORMZ2) & FNTUINDEX)) /
2CONNDRM{L INDEX ; NORM1 ) )

FVALUE2 = FUALUE2 + PROBCUM(LINDEX) »
1( (CONNORMCINDEX . NORM2) # FNT(FINDEX)) /
2CONNORM (L.TIMDEX, NORHI ) )

IF ( LINDEX .ER. ISTATES ) 60 70 100

ISTATE2(KK) = ISTRTE2(KK) + 1
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100

110

120

130

140
1%

160

IF ( ISTATE2(KK) .GT. MUSERS(KK) } GO TO 80
FINDEX = FINDEX + 1

LINDEX = LINDEX + 1

60 T0 70

CONTINLE

FINDEX = FINDEX + [SXIPUKX)

LINDEX = LINDEX + ISKIP(KK)

KK=KK+1

{STATE2(KK] = ISTATE2(K() + 1

IF (ISTATE2(KK) .GT. NUSERS(KX) ) G0 TO 80
L=KK-1

WVJ=1 L

ISTATE2(J) = ISTATEL())

CONTINUE

K=1

62 10 70

CONTINUE

PROBMAR(INDEX) = FVALUEL

PPP = PPP + FUALLEL

PROBCUNM{INDEX) = FVALUE2

INDEX = INDEX + 1

ISTATEL(1) = ISTATEL(1) + 1

IF ( ISTATEI(1) .LE. NUSERS(1) ) GO TO 40
CONTINUE

[STATEL(K) = ISTATEI(K) + {

IF { ISTATEICK) .GT. NUSERSIK) ) GO 7O 130
L=K-1

Wi1NJ=1, L

ISTATEL()) = 0

DONTINUE

K=2

G0 10 40

CONTINE

K=K+1

IF ( K .LE. ITYPES ) GO T0 110

CALL WRITMS(3, PROBMAR(1), ISTATES, MAXNODE®2+NSUB)
CONTINUE

CONTINLE

PPP = 0,

D0 160 I = 1, ISTATES

PPP = PPP + PROBOUM(I)

CONTINE

CALL WRITMS(3.PROBCUM(1), ISTATES, MAXNODE#241)
RETURN

(30

SUBROUTINE EXPECT (PROBMAR,PROBTOT,PROBPAR, NUSERS, ISTATE,
INODETYP, EXPVAL , DEPART , UTTL, SERVICE, E,
2MAXNODE; MAXIISE L , MAXTYPE , NODES, ITYPES, IUSERS, MAXSTAT, INDEX3,
3ISIZE3, 19TATES, 10EP, DEP, MAXUSER, PRINTON, NITER)
DIMENSION PROBMAR(MAXSTAT ), PROBTOT(NAXNODE, MAXUSEL ) s
1PROBPAR (MAXNOOE . AXTYPE, NAXUSEL), NUSERS(MAXTYPE),
2ISTATE(MAXTYFE) , NODETYP(MAKNODE) EXPUAL {MAXNODE, MAXTYPE),
JDEPART (MAXNODE, MAXTYPE) » UTIL {MAXNODE : MAXTYPE),

A=13

WARGIN
MWARGIN
WARGIN
MWARGIN
MARGIN
MARGIN
WARGIN
MARGIN
MARGIN
WARGIN
WRGIN
MARGIN
WRGIN
WARGIN
WARGIN
WARGIN
WARGIN
HARGIN
WARGIN
WARGIN
MARGIN
MARGIN
MARGIN
MARGIN
WRGIN
WARGIN
MARGIN
NARGIN 100
MARGIN 101
MARGIN 102
WARGIN 103
MWARGIN 104
MARGIN 105
WRGIN 106
NARGIN 107
NARGIN 108
MARGIN 109
MARGIN 110
MARGIN 111
NARGIN 112
NARGIN 113
WARGIN 114
WARGIN 115
NARGIN 116
MARGIN 117
EXPECT 2
EXPECT 3
EXPECT 4
CoXMOD 113
EXPECT &
EXPECT 7
EXPECT 8
EXPECT 9

LSRRI 2LRIRARII2IZIFAIS




OISO

10

&

ASERVICE (MAXNODE, MAXTYPE), INDEX3{ISIZE3), E(MAXNODE,MAXTYPE),

SIDEP(MAXNODE) » DEP(MAXNODE, NAXTYPE, MAXUSER)
LOGICAL PRINTON

THIS SUBROUTINE CALCULATES WARIOUS PERFORMANCE MEASURES
FOR THE TIME-SHARING SYSTEM BEING MODELED. THESE MEASURES
INCLUDE THE MARGINAL QUEUE LENGTH DISTRIBUTION FOR EACH TYPE
OF USER AT ERCH NCOE. THE UTILIAZTION OF THE NODES BY EACH
TYPE OF USER, AND THE RESPONSE TINE FOR EACH TYPE OF USER.

D0 10 I = 1, MAINODE
D0 10 J = 1, MAXUSEL
PROBTOT(L,J} = 0.0

D0 10 K = 1, MAXTYPE
PROBPAR(I,K> ) = 0.0
UTIL(LK) = 0.0
DEPART(1,K) = 0.0
CONTINUE

IF (PRINTON) WRITE(b,1)

FORMAT( 1M1, ////10X, "ss#43THE QUTPUT OF THE MODEL FOLLONSasass®)

D0 70 1 = 1, NOOES

CALL READMS(3,PROBMAR(1) . ISTATES, MAKNODE#2+41)
K=1

INDEX = 0

NTOTAL = 0

D0 20 J = 1, ITVPES

ISTATELY) = 1

CONTINUE

CONTINLE

NTOTAL = NTOTAL + ¢

INDEX = TNDEX + 1

PROB = PROBMAR( INDEX)

PROBTOT(1,NTOTAL) = PROBTOT{(I.NTOTAL} + PROD
D0 S0 J =1, ITYPES

& = ISTATE(D)

PROBPAR(T,Js )} = PROBPAR(I, JyJJ) + PROB
IF ( & .ER. 1) GO TO 30

PARTIAL = PROB # (JJ ~ 1)

IF { NODETYP(I) .ER. 3 ) GO TO 43
PARTIAL = PARTIAL / (NTOTAL - 1)
UTIL(1,Jd) = UTIL(1,J) + PARTIAL

CONTIME

PARVIAL = PARTIAL # {1, / SERVICE(I.J))
DEPART(1,J) = DEPART(I,J) + PARTIAL
CONTINUE

IF ( INDEX .ER. ISTATES ) GO 70 70
CONTIME

ISTATE(K) = ISTATE(K) + 1

IF ( ISTATE(K) .GT. NUSERS(K) + 1 ) 60 TD &3
K=1|

G0 ™ &0

CONTINE

ISTATE(K) = 1

A-14
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NTOTAL = NTOTAL - NUSERS(K)
K=K+
[F{K.E. ITYPES ) GO TO &0
70 CONTIME
{USERSL = TUSERS + 1
IF (PRINTON) WRITE{6,74) NODES
74 FORMAT(////10X,"THE MARGINAL QUEUE LENGTH PROBABILITIES *,
1"AT EQUILIBRIUN®///10X, *QUEVE LENGTH",5X, "QUEUE LENGTH *,
2"PROBABILITY FOR NODES 1 THROUGH *,I3)
0075 [ =1, MODES
EXPVWAL(I,1} = 0.
75 [INTIME
D0 110 J = 1, 1USERS]
N=d-1
DD 90 I = 1, NODES
EXPVAL(I.1) = EXPVAL(I.1) ¢ JJ # PROBTOT(I.J}
90  CONTIME
IF (PRINTON) WRITE(6,80) JJ» (PROBTOT(I.J)» I=1,NODES)
80  FORMAT(/14X,13, 7). 10F10.5, 10¢/24%, 10F10.5))
110 CONTIME
IF (PRINTON) WRITE(4,111)
111 FORMAT(////10X, "THE EXPECTED NUNBER OF TASKS AT EACH NODE®///10X,
1“NODE*, 10X, "EXPECTED VAUE™)
DO 113 I = 1, NODES
IF (PRINTON) WRITE(4,112) I, EXPVAL(I,D)
112 FORMAT(/10X, 14,101, F10.5)
113 (ONTINE
IF (PRINTON) WRITE(6.114)
114  FORMAT(///(/10K, *THE WARGINAL QUEUE LENGTH PROBABILITIES °,
1°AT EQUILIBRIUM CLASSIFIED BY TASK TYPE")
D0 160 J = 1, ITYPES
IF (PRINTON) WRITE(6,115) J» NODES
115 FORMAT(////10%,"THE MARGINAL QUEVE LENGTH PROBABILITIES *,
1"AT EQUILIBRIUM FOR TASK TYPE®,[3///10X, "QUEUE LENGTH®»SX,
2"QUEVE LENGTH PROBABILITIES FOR NODES 1 THROUGH *.13)
TUSERS1 = NUSERS(J) + 1
DO 1=1,
EXPVALLTL) = 0,
116  CONTINE
DO 130 K = 1, IUSERS1
K=K-t§
DO 120 1 = 1, NODES
EXPVAL{I,J) = EXPVAL(I.J) + KK # PROBPAR(I.JyK)
120 CONTIME
IF (PRINTON) WRITE(4,130) KK, (PROBPAR(I.J.K}, 1=1,NODES)
130 FORMAT(/14X, I3,4X, 10F10.5: 10(/24X, 10F10.5))
150 CONTIME
160  CONTINME
WRITE(b,142) ITYPES
162 FORMAT(////10%, "THE EXPECTED MMBER OF TASKS AT EACH NODE °,
1"CLASSIFIED BY TASK TYPE"///10X,"NODE", 10X, "EXPECTED NUMBER *,
2°0F TASK TYPES 1 THROUGH *,13,° FOUND AT NODE®)
D0 166 [ = 1, NODES
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WRITE(S.164) 1, (EXPVAL{I.d).J=f, ITYPES)

FORMAT(/10X., 14, 10X, 10F10.5. 10( /24X, 10F10.5) )

CONTIME

IF (PRINTON) MRITE{4,170) ITYPES

FORMAT(//7/10X,"NODE UTILIZATION BY EACH TASK TYPE"///10X,
1°NOCE™, 10X, "UTLIZATION OF NODE BY TASK TYPE | THROUGH *,13)
DO 180 I = 1, NODES

IF ( NODETYP(I) .EQ. 3 ) GO TO 180

IF (PRINTON} WRITEL4.175) T, (UTILLL.J).J=t, ITYPES)
FORMAT(/10X, [4, 10X, 10F10.5, 10(/24X, 10F10.5))

CONTINGE

00190 I = 1, NOIES

D0 185 J = 2, ITYPES

YTIL(L, 1) = UTILUT, 1) ¢ UTIL(L.J)

CONTINLE

CONTINGE

IF (PRINTON) WRITE(6.195)

FORMAT(////10%, *TOTAL NODE UTILIZATION®///10X,
1 "NODE", 10K, "UTILITATION")

D0 200 I = 1, NOIES

IF { NODETYP(I) .EQ. 3 ) GO TO 200

IF (PRINTON) WRITE(6,198) I, UTIL(I.1)
FORMAT(/10X, 14, 10X,F10.5)

CONTINUE

IF (PRINTON) WRITE(5.210) ITYPES

FORMAT{////10%, "THE MEAN TIYE EACH TASK TYPE SPENDS °*,
[°AT THE WARIOUS NODES FOR EACH INTERACTION®///10X.“NOBE®, 10X,
2°MEAR TIYE FOK TASK TYPE 1 THROUGH *,13)

D0 230 I = 1, NODES

IF (IDEP(1) .EQ. 1) 60 TO 205

IF (PRINTON) WRITE(b,204)

FORMAT(/10X. *THE MODEL DOES NOT CALCULATE THIS TINE FOR *,/10X,
1"NODES WITH STATE DEPENDENT SERVICE RATES.®)

G0 TO 230

CONTINUE

00 220 J = 1, ITVPES

UTIL(T.J) = 0,

IF ¢ (DEPART(I..J) .EQ. 0.) .OR. {E([.J) .BQ. 0.) ) GO TO 220
UTIL(I,J) = EXPVAL(L,J) / DEPART(I,J) ¢ E(I,J)

CONTINE

IF (PRINTON) WRITE(6,223) I, (UTIL(I.J).Jul,ITYPES)
FORMAT(/10X, I4. 10X, 10F10.5, 10(/24X, 10F10.5})

CONTINE

IF (PRINTON} WRITE(4,240)

FORMATC//¢/710%,"THE MERN RESPONSE TIME FOR THE VARIOS *,
1*TASK TYPES")

D0 230 1 = 1, NODES

IF { NODETYP(I) .NE. 3 ) 6D TQ 280

IF (PRINTON) WRITE(6,250) I

FORMAT(/77710%,*THE MEAN RESPONSE TIME FOR TASK ®,
1*REFRESENTED AT NODE °, 13//10X.°TASK TYPE®, 10X,
2°RESPONSE TINE®)

D0 270 J = 1, [TVPES
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TIKE = 0.

IF { DEPART(I,J) .£Q. 0.) GO T0 255

TIME = {NUSERSIJ) - EXPVAL(,J)) / DEPARTII,J)
CONTINGE

IF (PRINTON) WRITE(6,260) J» TIME
FORMAT(/13X, 13, 14X, F10.5)

CONTINUE

CONTINGE

RETURN

THAT’S ALL FOLKS!!

END

SUBROUTINE CHEN7S(PROB.NDI3KS, DISKPRB, TCPU, DI, NAVGJOB,
1EXPVAL , SERVICE, DELTA, PEXPVAL, [USERS, MAXNODE  MAXTYPE,
21 TYPES, NODES, NITER, E. X, NARER)

DIMENSION PROB{MAXNODE, MAXNODE) . DI SKPRE(MAXNODE: MAXTYPE),
{DIO{MAXTYPE), EXPVAL (NAXNODE, MAXTYPE)  SERVICE (MAXNODE, MAXTYPE) s
2E(MAXNODE > MAXTYPE) , X (NAXNODE) » TCPU(MAXTYPE)

ZUAREA({ MAKXNODE )
REAL DELTA,PEXPVAL
INTEGER NDISKS:MAXNODE, MAXTYPE, IUSERS

THIS SUBROUTINE CALCULATES THE DELTA BETWEEN THE LAST
ITERATIONS ANSHER FOR THE NUMBER OF JOBS IN THE "THINK STATE"
AND THE CURRENT [TERATIONS ANSWER CONTAINED IN
EXPVAL(NBISKS#3,1). ALSO, USING THE SUBROUTINE COMPUTE IT
RECOMPUTES THE PROBABILITY TRANSITION MATRIK, PROB, USING THE
FORMULAE CONTAINED IN CHEN'S ARTICLE, °QUEUEING NETWORY. MODEL
CF INTERACTIVE COMPUTIMG SYSTEMS®, IN THE
PROCEEDINGS (F THE IEEE, VOL. 43, N0. b, JUE T3,

WRITE(.:67) NITER

FORMAT(1HL, /// /10X, "TRANSITION PROBABILITIES DESCRIBING *,
1"NOVEPENT OF TASKS AMONG THE MODEL‘S NODES FOR ITERATION °,IS)
DO 110 K = 1, [TYPES

WRITE(6+68) K» NODES

FORMRT(///10%, "TRANSITION PROBABILITIES FOR TASK TYPE *.

113//10%, "DEPARTURE"®, 71, "PROBABILITY OF TRASK MOVEMENT FROL"/12X,

2°NOUE", 9%, "DEPARTLRE NODE TO NODES 1 THROUGH *,13)
CALL COMPUTE(K.PROB, NDISKS, DISKPRB, TCPU, DIO,
1EXPVAL, SERVICE » IUSERS, MAXNODE , MAXTYPE, NODES, NAVG.J0B)
IF (NITER .NE. 0) 60 TO 70

PROB(1,1) = PROB(1,1) + PROBINDISKS+2,1)
PROB(NDISKS+2,1) = 0.0

CONTIME

D0 731 = 1, NODES

WRITE(4,74) I, (PROB(J\[),J=l,NODES)

FORMAT(/12X, 14, 10X, 10F10, 5, 10( /24X, 10F10.5))
CONTDME

MAPROB = MAKNODE ¢ MAXNGDE
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IO OO

%0

3

100

105
10
1us

IO OO

CALL WRITMS(3.PROB(1.1),NUMPROB, 1)
DO €0 I = 1, NOTES

PROB(I, 1) = PROB(I. I)-1.

PROB(1.1) = 0,

K(I) = 0.

CONTINGE

PROB(1.1) = L.
X1 = 1.

THE RELATIVE TRANSITION RATE BETWEEN NODES IS CALCIRATED
SOLVING THE SET OF LINEAR EQUATIONS SPECIFIED BY PROB AND X.
THE SIBROUTINE LEOTIF SOLVES THIS SET OF LINEAR EQUATIONS.
LEQTIF IS A SUBROUTINE FROM THE INSL PACKAGE SUPPORTED AT
WRIGHT-PATTERSON AFB. OHID.

CALL LEQT{F{PROB. 1 NODES, MAXNODE, X, 0. WARER, [ER)

CALL REAIMS(3,PRIB(1.1),NUNPROB, 1)

D0 100 I = 1, NODES

GAMMA = 0,

00 %0 J = 1, NODES

GAMYA = GAMMA + (PROB(I.J) # X(J))

CONTINUE

IF ( ABS(GAMMA - X({D) ) .LE. .1 ) GO TO 100

WRITE(6,99) I, (X(L).L=1,NODES)

FORMAT (10X, "THE RELATIVE SERVICE RATE BETWEEN NODES CALCULATED *,
1°FROM THE COEFFICIENT ARRAY PROB IS IM ERROR FOR NOOE *,
213//5%,"THE RELATIVE SERVICE RATES ARE *, /10K,
310(/10(F10.5, 2X)))

GO TO 113

CONTINUE

DO 105 I= 1, NODES

E(L,K) = X(I)

CONTINUE

CONTINE

CONTINUE

RETURN

N

SUBROUTINE COMPUTE (JOLASS, PROB. NDTSKS, DISKPRB. TCPU, BIO,
1EXPVAL , SERVICE, IUSERS, MAXNODE; MAXTYPE, NODES ; NAVGJOB)

DIMENSION FRIB(MAXNCDE, MAXTYPE) , DISKPRB(MAXNODE, MAXTYPE),
1DIO{MAXTYPE )  EXPVAL (MAXNODE, NXTYPE)
25ERVICE{MAXNODE , MAXTYPE ), TCPU(MAXTYPE)

INTEGER JCLRASS, NDISKS: JUSERS, MAXNODE, MAXTYPE, ITYPES

THIS SUBROUTINE COMPUTES THE PROBABILITY TRANSITION MATRIX
FOR THE MODEL EASED ON THE INPUTS OF CHEN‘S MODEL (NDISKS, DISKPRB,
TCPU» AND DID) AND HIS FORMULAE.

INITIALIZE PROBABILITY TRANSITION MATRIX
D0 10 I = |, NODES

D0 10 J = 1, NODES

IF(.EQ, 1DGOTDS

PROB(J ) = 0.0
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50
60

G0 70 10

PROB(J, I) = 1.0

CONTINGE

PROB(NDISKS+3,1) = SERVICE(1, JCLASS) / TCPU(JCLASS)

00201 =1, NOTEKS

PROB(1+1,1) = DID(JCLASS) # PROB(NDISKS#3,1) # DISKPRB(I,JCLASS)
CONTTNUE

IF ((EXPVAL(NDISKS+3,1) .GE. IUSERS ~ NAVGJDB) .AND.

1{TUSERS .GE. NANGJ0B})

2FROBINDISKS+2, MDISKG+3) = {(IUSERS - NAWGJOB) / EXPVAL(NDISKS+3.1)

IF { TUSERS .LE. NAVGJOB ) PROBINDISKS+2,NDISKS+#3) = 0.0

IF { EXPVALINDISKS+3,1) .LE. (IUSERS - NAVGJOB) )
i PROBUNDISKS+2, NDISKS#3) = 1.0

PROBI1,MDISKS+3) = 1.0 - PRUB(NDISKS+2, MDISKS+3)

CHOICEL = 9.0

CHOICE2 = 0.0

ACTIVE = EXPVAL(1,1) + EYPVAL(NDISKS+2:1)

DO 401 =1, WDISKS

ACTIVE = ACTIVE + EXPVAL(I¢L, 1)

CHOICEL = CHOICEL + PROB(I+1.1)

CONTINUE

(HOICEL = CHOICE! + PROB(NDISKS#3.1)

CHOICEL = 1.0 - CHOICE!

IF ({ACTIVE .LT. NAVGJOB) .OR. {IUSERS .LE. NAVGJY(B)) G0 TO 50
CHOICE? = PROB(NDISKS+3.1) # (ACTIVE - NAWGJOB) /

1 (ILGERS ~ NAVGJB)

FROBINDISKS+2,1) = ANIN1(CHOICEL, CHOICEZ)

60 T0 40

PROB(NDISKS+2:L) = 0.0

PROB(1,1) = 1.0 - PROB(NDISKS+#2,1) ~ (1.0 - CHOICEL)
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